XB-MAML: Learning Expandable Basis Parameters for Effective
Meta-Learning with Wide Task Coverage
- URL: http://arxiv.org/abs/2403.06768v1
- Date: Mon, 11 Mar 2024 14:37:57 GMT
- Title: XB-MAML: Learning Expandable Basis Parameters for Effective
Meta-Learning with Wide Task Coverage
- Authors: Jae-Jun Lee, Sung Whan Yoon
- Abstract summary: We introduce XB-MAML, which learns expandable basis parameters, where they are linearly combined to form an effective initialization to a given task.
XB-MAML observes the discrepancy between the vector space spanned by the basis and fine-tuned parameters to decide whether to expand the basis.
- Score: 12.38102349597265
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Meta-learning, which pursues an effective initialization model, has emerged
as a promising approach to handling unseen tasks. However, a limitation remains
to be evident when a meta-learner tries to encompass a wide range of task
distribution, e.g., learning across distinctive datasets or domains. Recently,
a group of works has attempted to employ multiple model initializations to
cover widely-ranging tasks, but they are limited in adaptively expanding
initializations. We introduce XB-MAML, which learns expandable basis
parameters, where they are linearly combined to form an effective
initialization to a given task. XB-MAML observes the discrepancy between the
vector space spanned by the basis and fine-tuned parameters to decide whether
to expand the basis. Our method surpasses the existing works in the
multi-domain meta-learning benchmarks and opens up new chances of meta-learning
for obtaining the diverse inductive bias that can be combined to stretch toward
the effective initialization for diverse unseen tasks.
Related papers
- Task-Distributionally Robust Data-Free Meta-Learning [99.56612787882334]
Data-Free Meta-Learning (DFML) aims to efficiently learn new tasks by leveraging multiple pre-trained models without requiring their original training data.
For the first time, we reveal two major challenges hindering their practical deployments: Task-Distribution Shift ( TDS) and Task-Distribution Corruption (TDC)
arXiv Detail & Related papers (2023-11-23T15:46:54Z) - Improving Meta-learning for Low-resource Text Classification and
Generation via Memory Imitation [87.98063273826702]
We propose a memory imitation meta-learning (MemIML) method that enhances the model's reliance on support sets for task adaptation.
A theoretical analysis is provided to prove the effectiveness of our method.
arXiv Detail & Related papers (2022-03-22T12:41:55Z) - ST-MAML: A Stochastic-Task based Method for Task-Heterogeneous
Meta-Learning [12.215288736524268]
This paper proposes a novel method, ST-MAML, that empowers model-agnostic meta-learning (MAML) to learn from multiple task distributions.
We demonstrate that ST-MAML matches or outperforms the state-of-the-art on two few-shot image classification tasks, one curve regression benchmark, one image completion problem, and a real-world temperature prediction application.
arXiv Detail & Related papers (2021-09-27T18:54:50Z) - Meta-Learning with Fewer Tasks through Task Interpolation [67.03769747726666]
Current meta-learning algorithms require a large number of meta-training tasks, which may not be accessible in real-world scenarios.
By meta-learning with task gradient (MLTI), our approach effectively generates additional tasks by randomly sampling a pair of tasks and interpolating the corresponding features and labels.
Empirically, in our experiments on eight datasets from diverse domains, we find that the proposed general MLTI framework is compatible with representative meta-learning algorithms and consistently outperforms other state-of-the-art strategies.
arXiv Detail & Related papers (2021-06-04T20:15:34Z) - Large-Scale Meta-Learning with Continual Trajectory Shifting [76.29017270864308]
We show that allowing the meta-learners to take a larger number of inner gradient steps better captures the structure of heterogeneous and large-scale tasks.
In order to increase the frequency of meta-updates, we propose to estimate the required shift of the task-specific parameters.
We show that the algorithm largely outperforms the previous first-order meta-learning methods in terms of both generalization performance and convergence.
arXiv Detail & Related papers (2021-02-14T18:36:33Z) - A Nested Bi-level Optimization Framework for Robust Few Shot Learning [10.147225934340877]
NestedMAML learns to assign weights to training tasks or instances.
Experiments on synthetic and real-world datasets demonstrate that NestedMAML efficiently mitigates the effects of "unwanted" tasks or instances.
arXiv Detail & Related papers (2020-11-13T06:41:22Z) - La-MAML: Look-ahead Meta Learning for Continual Learning [14.405620521842621]
We propose Look-ahead MAML (La-MAML), a fast optimisation-based meta-learning algorithm for online-continual learning, aided by a small episodic memory.
La-MAML achieves performance superior to other replay-based, prior-based and meta-learning based approaches for continual learning on real-world visual classification benchmarks.
arXiv Detail & Related papers (2020-07-27T23:07:01Z) - Improving Generalization in Meta-learning via Task Augmentation [69.83677015207527]
We propose two task augmentation methods, including MetaMix and Channel Shuffle.
Both MetaMix and Channel Shuffle outperform state-of-the-art results by a large margin across many datasets.
arXiv Detail & Related papers (2020-07-26T01:50:42Z) - Task-Feature Collaborative Learning with Application to Personalized
Attribute Prediction [166.87111665908333]
We propose a novel multi-task learning method called Task-Feature Collaborative Learning (TFCL)
Specifically, we first propose a base model with a heterogeneous block-diagonal structure regularizer to leverage the collaborative grouping of features and tasks.
As a practical extension, we extend the base model by allowing overlapping features and differentiating the hard tasks.
arXiv Detail & Related papers (2020-04-29T02:32:04Z) - Structured Prediction for Conditional Meta-Learning [44.30857707980074]
We propose a new perspective on conditional meta-learning via structured prediction.
We derive task-adaptive structured meta-learning (TASML), a principled framework that yields task-specific objective functions.
Empirically, we show that TASML improves the performance of existing meta-learning models, and outperforms the state-of-the-art on benchmark datasets.
arXiv Detail & Related papers (2020-02-20T15:24:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.