Suppressing Correlated Noise in Quantum Computers via Context-Aware Compiling
- URL: http://arxiv.org/abs/2403.06852v2
- Date: Mon, 26 Aug 2024 13:27:31 GMT
- Title: Suppressing Correlated Noise in Quantum Computers via Context-Aware Compiling
- Authors: Alireza Seif, Haoran Liao, Vinay Tripathi, Kevin Krsulich, Moein Malekakhlagh, Mirko Amico, Petar Jurcevic, Ali Javadi-Abhari,
- Abstract summary: Correlations in noise can occur as a result of spatial and temporal configurations of instructions executing on the quantum processor.
We devise compiler strategies to suppress these errors using dynamical decoupling or error compensation into the rest of the circuit.
Our experiments show an increase of 18.5% in layer fidelity for a candidate 10-qubit circuit layer compared to context-unaware suppression.
- Score: 0.9623525909952625
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Coherent errors, and especially those that occur in correlation among a set of qubits, are detrimental for large-scale quantum computing. Correlations in noise can occur as a result of spatial and temporal configurations of instructions executing on the quantum processor. In this paper, we perform a detailed experimental characterization of many of these error sources, and theoretically connect them to the physics of superconducting qubits and gate operations. Equipped with this knowledge, we devise compiler strategies to suppress these errors using dynamical decoupling or error compensation into the rest of the circuit. Importantly, these strategies are successful when the context at each layer of computation is taken into account: how qubits are connected, what crosstalk terms exist on the device, and what gates or idle periods occur in that layer. Our context-aware compiler thus suppresses some dominant sources of error, making further error mitigation or error correction substantially less expensive. For example, our experiments show an increase of 18.5\% in layer fidelity for a candidate 10-qubit circuit layer compared to context-unaware suppression. Owing to the exponential nature of error mitigation, these improvements due to error suppression translate to several orders of magnitude reduction of sampling overhead for a circuit consisting of a moderate number of layers.
Related papers
- Low bit-flip rate probabilistic error cancellation [0.0]
Noise remains one of the most significant challenges in the development of reliable and scalable quantum processors.
In this work, we explore how the unique noise bias of cat-qubits can be harnessed to enhance error mitigation efficiency.
arXiv Detail & Related papers (2024-11-10T11:04:16Z) - Detrimental non-Markovian errors for surface code memory [0.5490714603843316]
We study the structure of non-Markovian correlated errors and their impact on surface code memory performance.
Our analysis shows that while not all temporally correlated structures are detrimental, certain structures, particularly multi-time "streaky" correlations, can severely degrade logical error rate scaling.
arXiv Detail & Related papers (2024-10-31T09:52:21Z) - Fault-tolerant quantum architectures based on erasure qubits [49.227671756557946]
We exploit the idea of erasure qubits, relying on an efficient conversion of the dominant noise into erasures at known locations.
We propose and optimize QEC schemes based on erasure qubits and the recently-introduced Floquet codes.
Our results demonstrate that, despite being slightly more complex, QEC schemes based on erasure qubits can significantly outperform standard approaches.
arXiv Detail & Related papers (2023-12-21T17:40:18Z) - Fast Flux-Activated Leakage Reduction for Superconducting Quantum
Circuits [84.60542868688235]
leakage out of the computational subspace arising from the multi-level structure of qubit implementations.
We present a resource-efficient universal leakage reduction unit for superconducting qubits using parametric flux modulation.
We demonstrate that using the leakage reduction unit in repeated weight-two stabilizer measurements reduces the total number of detected errors in a scalable fashion.
arXiv Detail & Related papers (2023-09-13T16:21:32Z) - A framework of partial error correction for intermediate-scale quantum
computers [0.7046417074932257]
We show that brick-layered circuits display on average slower concentration to the "useless" uniform distribution.
We find that this advantage only comes when the number of error-corrected qubits passes a specified threshold.
arXiv Detail & Related papers (2023-06-27T15:00:57Z) - Overcoming leakage in scalable quantum error correction [128.39402546769284]
Leakage of quantum information out of computational states into higher energy states represents a major challenge in the pursuit of quantum error correction (QEC)
Here, we demonstrate the execution of a distance-3 surface code and distance-21 bit-flip code on a Sycamore quantum processor where leakage is removed from all qubits in each cycle.
We report a ten-fold reduction in steady-state leakage population on the data qubits encoding the logical state and an average leakage population of less than $1 times 10-3$ throughout the entire device.
arXiv Detail & Related papers (2022-11-09T07:54:35Z) - Volumetric Benchmarking of Error Mitigation with Qermit [0.0]
We develop a methodology to assess the performance of quantum error mitigation techniques.
Our benchmarks are volumetric in design, and are performed on different superconducting hardware devices.
Qermit is an open source python package for quantum error mitigation.
arXiv Detail & Related papers (2022-04-20T18:13:04Z) - Measuring NISQ Gate-Based Qubit Stability Using a 1+1 Field Theory and
Cycle Benchmarking [50.8020641352841]
We study coherent errors on a quantum hardware platform using a transverse field Ising model Hamiltonian as a sample user application.
We identify inter-day and intra-day qubit calibration drift and the impacts of quantum circuit placement on groups of qubits in different physical locations on the processor.
This paper also discusses how these measurements can provide a better understanding of these types of errors and how they may improve efforts to validate the accuracy of quantum computations.
arXiv Detail & Related papers (2022-01-08T23:12:55Z) - Crosstalk Suppression for Fault-tolerant Quantum Error Correction with
Trapped Ions [62.997667081978825]
We present a study of crosstalk errors in a quantum-computing architecture based on a single string of ions confined by a radio-frequency trap, and manipulated by individually-addressed laser beams.
This type of errors affects spectator qubits that, ideally, should remain unaltered during the application of single- and two-qubit quantum gates addressed at a different set of active qubits.
We microscopically model crosstalk errors from first principles and present a detailed study showing the importance of using a coherent vs incoherent error modelling and, moreover, discuss strategies to actively suppress this crosstalk at the gate level.
arXiv Detail & Related papers (2020-12-21T14:20:40Z) - Fault-tolerant Coding for Quantum Communication [71.206200318454]
encode and decode circuits to reliably send messages over many uses of a noisy channel.
For every quantum channel $T$ and every $eps>0$ there exists a threshold $p(epsilon,T)$ for the gate error probability below which rates larger than $C-epsilon$ are fault-tolerantly achievable.
Our results are relevant in communication over large distances, and also on-chip, where distant parts of a quantum computer might need to communicate under higher levels of noise.
arXiv Detail & Related papers (2020-09-15T15:10:50Z) - Efficiently computing logical noise in quantum error correcting codes [0.0]
We show that measurement errors on readout qubits manifest as a renormalization on the effective logical noise.
We derive general methods for reducing the computational complexity of the exact effective logical noise by many orders of magnitude.
arXiv Detail & Related papers (2020-03-23T19:40:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.