Multi-Agent Reinforcement Learning with a Hierarchy of Reward Machines
- URL: http://arxiv.org/abs/2403.07005v1
- Date: Fri, 8 Mar 2024 06:38:22 GMT
- Title: Multi-Agent Reinforcement Learning with a Hierarchy of Reward Machines
- Authors: Xuejing Zheng, Chao Yu
- Abstract summary: We study the cooperative Multi-Agent Reinforcement Learning (MARL) problems using Reward Machines (RMs)
We present Multi-Agent Reinforcement Learning with a hierarchy of RMs (MAHRM) that is capable of dealing with more complex scenarios.
Experimental results in three cooperative MARL domains show that MAHRM outperforms other MARL methods using the same prior knowledge of high-level events.
- Score: 5.600971575680638
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we study the cooperative Multi-Agent Reinforcement Learning
(MARL) problems using Reward Machines (RMs) to specify the reward functions
such that the prior knowledge of high-level events in a task can be leveraged
to facilitate the learning efficiency. Unlike the existing work that RMs have
been incorporated into MARL for task decomposition and policy learning in
relatively simple domains or with an assumption of independencies among the
agents, we present Multi-Agent Reinforcement Learning with a Hierarchy of RMs
(MAHRM) that is capable of dealing with more complex scenarios when the events
among agents can occur concurrently and the agents are highly interdependent.
MAHRM exploits the relationship of high-level events to decompose a task into
a hierarchy of simpler subtasks that are assigned to a small group of agents,
so as to reduce the overall computational complexity.
Experimental results in three cooperative MARL domains show that MAHRM
outperforms other MARL methods using the same prior knowledge of high-level
events.
Related papers
- From Novice to Expert: LLM Agent Policy Optimization via Step-wise Reinforcement Learning [62.54484062185869]
We introduce StepAgent, which utilizes step-wise reward to optimize the agent's reinforcement learning process.
We propose implicit-reward and inverse reinforcement learning techniques to facilitate agent reflection and policy adjustment.
arXiv Detail & Related papers (2024-11-06T10:35:11Z) - Learning Reward Machines in Cooperative Multi-Agent Tasks [75.79805204646428]
This paper presents a novel approach to Multi-Agent Reinforcement Learning (MARL)
It combines cooperative task decomposition with the learning of reward machines (RMs) encoding the structure of the sub-tasks.
The proposed method helps deal with the non-Markovian nature of the rewards in partially observable environments.
arXiv Detail & Related papers (2023-03-24T15:12:28Z) - Policy Diagnosis via Measuring Role Diversity in Cooperative Multi-agent
RL [107.58821842920393]
We quantify the agent's behavior difference and build its relationship with the policy performance via bf Role Diversity
We find that the error bound in MARL can be decomposed into three parts that have a strong relation to the role diversity.
The decomposed factors can significantly impact policy optimization on three popular directions.
arXiv Detail & Related papers (2022-06-01T04:58:52Z) - Hierarchies of Reward Machines [75.55324974788475]
Reward machines (RMs) are a recent formalism for representing the reward function of a reinforcement learning task through a finite-state machine.
We propose a formalism for further abstracting the subtask structure by endowing an RM with the ability to call other RMs.
arXiv Detail & Related papers (2022-05-31T12:39:24Z) - ALMA: Hierarchical Learning for Composite Multi-Agent Tasks [21.556661319375255]
We introduce ALMA, a general learning method for taking advantage of structured tasks.
ALMA simultaneously learns a high-level subtask allocation policy and low-level agent policies.
We demonstrate that ALMA learns sophisticated coordination behavior in a number of challenging environments.
arXiv Detail & Related papers (2022-05-27T19:12:23Z) - LDSA: Learning Dynamic Subtask Assignment in Cooperative Multi-Agent
Reinforcement Learning [122.47938710284784]
We propose a novel framework for learning dynamic subtask assignment (LDSA) in cooperative MARL.
To reasonably assign agents to different subtasks, we propose an ability-based subtask selection strategy.
We show that LDSA learns reasonable and effective subtask assignment for better collaboration.
arXiv Detail & Related papers (2022-05-05T10:46:16Z) - KnowSR: Knowledge Sharing among Homogeneous Agents in Multi-agent
Reinforcement Learning [16.167201058368303]
We present an adaptation method of the majority of multi-agent reinforcement learning (MARL) algorithms called KnowSR.
We employ the idea of knowledge distillation (KD) to share knowledge among agents to shorten the training phase.
To empirically demonstrate the robustness and effectiveness of KnowSR, we performed extensive experiments on state-of-the-art MARL algorithms in collaborative and competitive scenarios.
arXiv Detail & Related papers (2021-05-25T02:19:41Z) - UneVEn: Universal Value Exploration for Multi-Agent Reinforcement
Learning [53.73686229912562]
We propose a novel MARL approach called Universal Value Exploration (UneVEn)
UneVEn learns a set of related tasks simultaneously with a linear decomposition of universal successor features.
Empirical results on a set of exploration games, challenging cooperative predator-prey tasks requiring significant coordination among agents, and StarCraft II micromanagement benchmarks show that UneVEn can solve tasks where other state-of-the-art MARL methods fail.
arXiv Detail & Related papers (2020-10-06T19:08:47Z) - Reward Machines for Cooperative Multi-Agent Reinforcement Learning [30.84689303706561]
In cooperative multi-agent reinforcement learning, a collection of agents learns to interact in a shared environment to achieve a common goal.
We propose the use of reward machines (RM) -- Mealy machines used as structured representations of reward functions -- to encode the team's task.
The proposed novel interpretation of RMs in the multi-agent setting explicitly encodes required teammate interdependencies, allowing the team-level task to be decomposed into sub-tasks for individual agents.
arXiv Detail & Related papers (2020-07-03T23:08:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.