Adaptive Hyperparameter Optimization for Continual Learning Scenarios
- URL: http://arxiv.org/abs/2403.07015v2
- Date: Wed, 19 Jun 2024 15:17:51 GMT
- Title: Adaptive Hyperparameter Optimization for Continual Learning Scenarios
- Authors: Rudy Semola, Julio Hurtado, Vincenzo Lomonaco, Davide Bacciu,
- Abstract summary: This paper aims to explore the role of hyperparameter selection in continual learning.
By using the functional analysis of variance-based techniques, we identify the most crucial hyperparameters that have an impact on performance.
We demonstrate empirically that this approach, agnostic to continual scenarios and strategies, allows us to speed up hyperparameters optimization continually across tasks and exhibit robustness even in the face of varying sequential task orders.
- Score: 19.151871846937738
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hyperparameter selection in continual learning scenarios is a challenging and underexplored aspect, especially in practical non-stationary environments. Traditional approaches, such as grid searches with held-out validation data from all tasks, are unrealistic for building accurate lifelong learning systems. This paper aims to explore the role of hyperparameter selection in continual learning and the necessity of continually and automatically tuning them according to the complexity of the task at hand. Hence, we propose leveraging the nature of sequence task learning to improve Hyperparameter Optimization efficiency. By using the functional analysis of variance-based techniques, we identify the most crucial hyperparameters that have an impact on performance. We demonstrate empirically that this approach, agnostic to continual scenarios and strategies, allows us to speed up hyperparameters optimization continually across tasks and exhibit robustness even in the face of varying sequential task orders. We believe that our findings can contribute to the advancement of continual learning methodologies towards more efficient, robust and adaptable models for real-world applications.
Related papers
- Hyper: Hyperparameter Robust Efficient Exploration in Reinforcement Learning [48.81121647322492]
textbfHyper is provably efficient under function approximation setting and empirically demonstrate its appealing performance and robustness in various environments.
textbfHyper extensively mitigates the problem by effectively regularizing the visitation of the exploration and decoupling the exploitation to ensure stable training.
arXiv Detail & Related papers (2024-12-04T23:12:41Z) - Task-Aware Harmony Multi-Task Decision Transformer for Offline Reinforcement Learning [70.96345405979179]
The purpose of offline multi-task reinforcement learning (MTRL) is to develop a unified policy applicable to diverse tasks without the need for online environmental interaction.
variations in task content and complexity pose significant challenges in policy formulation.
We introduce the Harmony Multi-Task Decision Transformer (HarmoDT), a novel solution designed to identify an optimal harmony subspace of parameters for each task.
arXiv Detail & Related papers (2024-11-02T05:49:14Z) - Combining Automated Optimisation of Hyperparameters and Reward Shape [7.407166175374958]
We propose a methodology for the combined optimisation of hyperparameters and the reward function.
We conducted extensive experiments using Proximal Policy optimisation and Soft Actor-Critic.
Our results show that combined optimisation significantly improves over baseline performance in half of the environments and achieves competitive performance in the others.
arXiv Detail & Related papers (2024-06-26T12:23:54Z) - End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
The Predict-Then-Forecast (PtO) paradigm in machine learning aims to maximize downstream decision quality.
This paper extends the PtO methodology to optimization problems with nondifferentiable Ordered Weighted Averaging (OWA) objectives.
It shows how optimization of OWA functions can be effectively integrated with parametric prediction for fair and robust optimization under uncertainty.
arXiv Detail & Related papers (2024-02-12T16:33:35Z) - Scrap Your Schedules with PopDescent [0.0]
Population Descent (PopDescent) is a memetic, population-based search technique.
We show that PopDescent converges faster than existing search methods, finding model parameters with test-loss values up to 18% lower.
Our trials on standard machine learning vision tasks show that PopDescent converges faster than existing search methods, finding model parameters with test-loss values up to 18% lower.
arXiv Detail & Related papers (2023-10-23T08:11:17Z) - To tune or not to tune? An Approach for Recommending Important
Hyperparameters [2.121963121603413]
We consider building the relationship between the performance of the machine learning models and their hyperparameters to discover the trend and gain insights.
Our results enable users to decide whether it is worth conducting a possibly time-consuming tuning strategy.
arXiv Detail & Related papers (2021-08-30T08:54:58Z) - Amortized Auto-Tuning: Cost-Efficient Transfer Optimization for
Hyperparameter Recommendation [83.85021205445662]
We propose an instantiation--amortized auto-tuning (AT2) to speed up tuning of machine learning models.
We conduct a thorough analysis of the multi-task multi-fidelity Bayesian optimization framework, which leads to the best instantiation--amortized auto-tuning (AT2)
arXiv Detail & Related papers (2021-06-17T00:01:18Z) - Search Algorithms for Automated Hyper-Parameter Tuning [1.2233362977312945]
We develop two automated Hyper- Optimization methods, namely grid search and random search, to assess and improve a previous study's performance.
Experiment results show that applying random search and grid search on machine learning algorithms improves accuracy.
arXiv Detail & Related papers (2021-04-29T22:11:52Z) - Efficient Continual Adaptation for Generative Adversarial Networks [97.20244383723853]
We present a continual learning approach for generative adversarial networks (GANs)
Our approach is based on learning a set of global and task-specific parameters.
We show that the feature-map transformation based approach outperforms state-of-the-art continual GANs methods.
arXiv Detail & Related papers (2021-03-06T05:09:37Z) - Efficient Hyperparameter Tuning with Dynamic Accuracy Derivative-Free
Optimization [0.27074235008521236]
We apply a recent dynamic accuracy derivative-free optimization method to hyperparameter tuning.
This method allows inexact evaluations of the learning problem while retaining convergence guarantees.
We demonstrate its robustness and efficiency compared to a fixed accuracy approach.
arXiv Detail & Related papers (2020-11-06T00:59:51Z) - Learning Adaptive Loss for Robust Learning with Noisy Labels [59.06189240645958]
Robust loss is an important strategy for handling robust learning issue.
We propose a meta-learning method capable of robust hyper tuning.
Four kinds of SOTA loss functions are attempted to be minimization, general availability and effectiveness.
arXiv Detail & Related papers (2020-02-16T00:53:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.