Robust Calibration of Large Vision-Language Adapters
- URL: http://arxiv.org/abs/2407.13588v1
- Date: Thu, 18 Jul 2024 15:27:56 GMT
- Title: Robust Calibration of Large Vision-Language Adapters
- Authors: Balamurali Murugesan, Julio Silva-Rodriguez, Ismail Ben Ayed, Jose Dolz,
- Abstract summary: This paper addresses the critical issue of miscalibration in CLIP-based model adaptation.
We empirically demonstrate that popular CLIP adaptation approaches, such as Adapters, Prompt Learning, and Test-Time Adaptation, substantially degrade the calibration capabilities of the zero-shot baseline.
Motivated by these observations, we present a simple and model-agnostic solution to mitigate miscalibration, by scaling the logit range of each sample to its zero-shot prediction logits.
- Score: 17.583536041845402
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper addresses the critical issue of miscalibration in CLIP-based model adaptation, particularly in the challenging scenario of out-of-distribution (OOD) samples, which has been overlooked in the existing literature on CLIP adaptation. We empirically demonstrate that popular CLIP adaptation approaches, such as Adapters, Prompt Learning, and Test-Time Adaptation, substantially degrade the calibration capabilities of the zero-shot baseline in the presence of distributional drift. We identify the increase in logit ranges as the underlying cause of miscalibration of CLIP adaptation methods, contrasting with previous work on calibrating fully-supervised models. Motivated by these observations, we present a simple and model-agnostic solution to mitigate miscalibration, by scaling the logit range of each sample to its zero-shot prediction logits. We explore three different alternatives to achieve this, which can be either integrated during adaptation or directly used at inference time. Comprehensive experiments on popular OOD classification benchmarks demonstrate the effectiveness of the proposed approaches in mitigating miscalibration while maintaining discriminative performance, whose improvements are consistent across the three families of these increasingly popular approaches. The code is publicly available at: https://github.com/Bala93/CLIPCalib
Related papers
- BaFTA: Backprop-Free Test-Time Adaptation For Zero-Shot Vision-Language Models [20.88680592729709]
We propose a novel backpropagation-free algorithm BaFTA for test-time adaptation of vision-language models.
BaFTA directly estimates class centroids using online clustering within a projected embedding space.
We demonstrate that BaFTA consistently outperforms state-of-the-art test-time adaptation methods in both effectiveness and efficiency.
arXiv Detail & Related papers (2024-06-17T08:16:24Z) - Calibrating Multi-modal Representations: A Pursuit of Group Robustness without Annotations [19.800907485589402]
Fine-tuning pre-trained vision-language models, like CLIP, has yielded success on diverse downstream tasks.
These tuned models tend to become highly specialized, limiting their practicality for real-world deployment.
We propose a lightweight representation calibration method for fine-tuning CLIP.
arXiv Detail & Related papers (2024-03-12T01:47:17Z) - Source-Free Unsupervised Domain Adaptation with Hypothesis Consolidation
of Prediction Rationale [53.152460508207184]
Source-Free Unsupervised Domain Adaptation (SFUDA) is a challenging task where a model needs to be adapted to a new domain without access to target domain labels or source domain data.
This paper proposes a novel approach that considers multiple prediction hypotheses for each sample and investigates the rationale behind each hypothesis.
To achieve the optimal performance, we propose a three-step adaptation process: model pre-adaptation, hypothesis consolidation, and semi-supervised learning.
arXiv Detail & Related papers (2024-02-02T05:53:22Z) - Calibration of Time-Series Forecasting: Detecting and Adapting Context-Driven Distribution Shift [28.73747033245012]
We introduce a universal calibration methodology for the detection and adaptation of context-driven distribution shifts.
A novel CDS detector, termed the "residual-based CDS detector" or "Reconditionor", quantifies the model's vulnerability to CDS.
A high Reconditionor score indicates a severe susceptibility, thereby necessitating model adaptation.
arXiv Detail & Related papers (2023-10-23T11:58:01Z) - Enabling Calibration In The Zero-Shot Inference of Large Vision-Language
Models [58.720142291102135]
We measure calibration across relevant variables like prompt, dataset, and architecture, and find that zero-shot inference with CLIP is miscalibrated.
A single learned temperature generalizes for each specific CLIP model across inference dataset and prompt choice.
arXiv Detail & Related papers (2023-03-11T17:14:04Z) - CLIPood: Generalizing CLIP to Out-of-Distributions [73.86353105017076]
Contrastive language-image pre-training (CLIP) models have shown impressive zero-shot ability, but the further adaptation of CLIP on downstream tasks undesirably degrades OOD performances.
We propose CLIPood, a fine-tuning method that can adapt CLIP models to OOD situations where both domain shifts and open classes may occur on unseen test data.
Experiments on diverse datasets with different OOD scenarios show that CLIPood consistently outperforms existing generalization techniques.
arXiv Detail & Related papers (2023-02-02T04:27:54Z) - On Calibrating Semantic Segmentation Models: Analyses and An Algorithm [51.85289816613351]
We study the problem of semantic segmentation calibration.
Model capacity, crop size, multi-scale testing, and prediction correctness have impact on calibration.
We propose a simple, unifying, and effective approach, namely selective scaling.
arXiv Detail & Related papers (2022-12-22T22:05:16Z) - Modular Conformal Calibration [80.33410096908872]
We introduce a versatile class of algorithms for recalibration in regression.
This framework allows one to transform any regression model into a calibrated probabilistic model.
We conduct an empirical study of MCC on 17 regression datasets.
arXiv Detail & Related papers (2022-06-23T03:25:23Z) - Localized Calibration: Metrics and Recalibration [133.07044916594361]
We propose a fine-grained calibration metric that spans the gap between fully global and fully individualized calibration.
We then introduce a localized recalibration method, LoRe, that improves the LCE better than existing recalibration methods.
arXiv Detail & Related papers (2021-02-22T07:22:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.