論文の概要: CALF: Aligning LLMs for Time Series Forecasting via Cross-modal Fine-Tuning
- arxiv url: http://arxiv.org/abs/2403.07300v2
- Date: Thu, 23 May 2024 04:47:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-25 06:09:38.907301
- Title: CALF: Aligning LLMs for Time Series Forecasting via Cross-modal Fine-Tuning
- Title(参考訳): CALF:クロスモーダルファインチューニングによる時系列予測のためのLLMの調整
- Authors: Peiyuan Liu, Hang Guo, Tao Dai, Naiqi Li, Jigang Bao, Xudong Ren, Yong Jiang, Shu-Tao Xia,
- Abstract要約: MTSFのためのクロスモーダルLCMファインチューニング(CALF)フレームワークを提案する。
分散の相違を低減するため,クロスモーダルマッチングモジュールを開発した。
CALFは、長期および短期の予測タスクの最先端のパフォーマンスを確立する。
- 参考スコア(独自算出の注目度): 59.88924847995279
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning (e.g., Transformer) has been widely and successfully used in multivariate time series forecasting (MTSF). Unlike existing methods that focus on training models from a single modal of time series input, large language models (LLMs) based MTSF methods with cross-modal text and time series input have recently shown great superiority, especially with limited temporal data. However, current LLM-based MTSF methods usually focus on adapting and fine-tuning LLMs, while neglecting the distribution discrepancy between textual and temporal input tokens, thus leading to sub-optimal performance. To address this issue, we propose a novel Cross-Modal LLM Fine-Tuning (CALF) framework for MTSF by reducing the distribution discrepancy between textual and temporal data, which mainly consists of the temporal target branch with temporal input and the textual source branch with aligned textual input. To reduce the distribution discrepancy, we develop the cross-modal match module to first align cross-modal input distributions. Additionally, to minimize the modality distribution gap in both feature and output spaces, feature regularization loss is developed to align the intermediate features between the two branches for better weight updates, while output consistency loss is introduced to allow the output representations of both branches to correspond effectively. Thanks to the modality alignment, CALF establishes state-of-the-art performance for both long-term and short-term forecasting tasks with low computational complexity, and exhibiting favorable few-shot and zero-shot abilities similar to that in LLMs. Code is available at \url{https://github.com/Hank0626/LLaTA}.
- Abstract(参考訳): 深層学習(例えばTransformer)は多変量時系列予測(MTSF)で広く使われ、成功している。
時系列入力の単一モーダルからトレーニングモデルにフォーカスする既存の手法とは異なり、大規模言語モデル(LLM)に基づくクロスモーダルテキストと時系列入力を用いたMTSF法は、特に時間的データに制限のある場合において、非常に優れていることを示している。
しかし、現在のLLMベースのMTSF法は、通常、テキスト入力トークンと時間入力トークンの分布差を無視しながら、適応と微調整に重点を置いており、その結果、準最適性能をもたらす。
この問題に対処するため,MTSF のための新しいクロスモーダル LLM Fine-Tuning (CALF) フレームワークを提案する。
分散の相違を低減するため,まずクロスモーダルな入力分布をアライメントするクロスモーダルマッチングモジュールを開発した。
さらに、特徴空間と出力空間のモダリティ分布ギャップを最小限に抑えるために、2つの分岐間の中間的特徴を整列させて重み更新を改善する機能正規化ロスを、両分岐の出力表現を効果的に対応させる出力整合損失を導入する。
モダリティアライメントにより、CALFは、計算複雑性の低い長期および短期の予測タスクに対して最先端のパフォーマンスを確立し、LLMと同様のいくつかのショットとゼロショットの能力を示す。
コードは \url{https://github.com/Hank0626/LLaTA} で入手できる。
関連論文リスト
- TableTime: Reformulating Time Series Classification as Zero-Shot Table Understanding via Large Language Models [54.44272772296578]
大規模言語モデル (LLM) は多変量時系列分類において有効であることを示した。
LLM は LLM の潜在空間内の時系列の埋め込みを直接コードし、LLM の意味空間と一致させる。
MTSCを表理解タスクとして再編成するテーブルタイムを提案する。
論文 参考訳(メタデータ) (2024-11-24T07:02:32Z) - Multimodality Helps Few-Shot 3D Point Cloud Semantic Segmentation [61.91492500828508]
FS-PCS (Few-shot 3D point cloud segmentation) は、最小のサポートサンプルで新しいカテゴリを分割するモデルを一般化することを目的としている。
本稿では,テキストラベルと潜在的に利用可能な2次元画像モダリティを利用して,コストフリーのマルチモーダルFS-PCSセットアップを提案する。
トレーニングバイアスを軽減するため,テスト時間適応型クロスモーダルセグ(TACC)技術を提案する。
論文 参考訳(メタデータ) (2024-10-29T19:28:41Z) - Hierarchical Multimodal LLMs with Semantic Space Alignment for Enhanced Time Series Classification [4.5939667818289385]
HiTimeは階層的なマルチモーダルモデルであり、時間的情報を大きな言語モデルにシームレスに統合する。
本研究は, 時間的特徴をLCMに組み込むことにより, 時系列解析の進歩に寄与する可能性が示唆された。
論文 参考訳(メタデータ) (2024-10-24T12:32:19Z) - SWIFT: On-the-Fly Self-Speculative Decoding for LLM Inference Acceleration [10.970637831760136]
投機的復号法(SD)は,大規模言語モデル(LLM)の推論を高速化するパラダイムとして広く用いられている。
本稿では,LLMの中間層を適応的に選択して推論時にスキップする,オンザフライの自己投機的復号アルゴリズムであるSWIFTを紹介する。
SWIFTは生成したテキストの元の分布を保ちながら1.3x-1.6xの高速化を実現可能であることを示す。
論文 参考訳(メタデータ) (2024-10-09T14:15:30Z) - Reprogramming Foundational Large Language Models(LLMs) for Enterprise Adoption for Spatio-Temporal Forecasting Applications: Unveiling a New Era in Copilot-Guided Cross-Modal Time Series Representation Learning [0.0]
パティオ時間予測は、輸送システム、物流、サプライチェーン管理など、様々な分野において重要な役割を担っている。
本稿では,オープンソースの大規模・小規模言語モデル(LLM,LM)と従来の予測手法を組み合わせたハイブリッド手法を提案する。
論文 参考訳(メタデータ) (2024-08-26T16:11:53Z) - DALD: Improving Logits-based Detector without Logits from Black-box LLMs [56.234109491884126]
大規模言語モデル(LLM)はテキスト生成に革命をもたらし、人間の文章を忠実に模倣する出力を生成する。
我々は、ブラックボックステキスト検出における最先端性能を再定義する革新的なフレームワークであるDLD(Dis Distribution-Aligned LLMs Detection)を提案する。
DALDは、サロゲートモデルの分布を未知の目標LLMの分布と整合させ、高速モデルの反復に対する検出能力とレジリエンスを向上するように設計されている。
論文 参考訳(メタデータ) (2024-06-07T19:38:05Z) - Adaptive Multi-Scale Decomposition Framework for Time Series Forecasting [26.141054975797868]
時系列予測(TSF)のための新しい適応型マルチスケール分解(AMD)フレームワークを提案する。
我々のフレームワークは時系列を複数のスケールで異なる時間パターンに分解し、MDM(Multi-Scale Decomposable Mixing)ブロックを活用する。
提案手法は,時間依存性とチャネル依存性の両方を効果的にモデル化し,マルチスケールデータ統合を改良するために自己相関を利用する。
論文 参考訳(メタデータ) (2024-06-06T05:27:33Z) - TimeCMA: Towards LLM-Empowered Time Series Forecasting via Cross-Modality Alignment [21.690191536424567]
TimeCMAは、モーダリティ間のアライメントを伴う時系列予測のフレームワークである。
実データに関する大規模な実験は、提案したフレームワークの精度と効率に関する洞察を提供する。
論文 参考訳(メタデータ) (2024-06-03T00:27:29Z) - Nearest Neighbor Speculative Decoding for LLM Generation and Attribution [87.3259169631789]
Nearest Speculative Decoding (NEST)は、任意の長さの実世界のテキストスパンをLM世代に組み込むことができ、それらのソースへの属性を提供する。
NESTは、様々な知識集約タスクにおいて、基本LMの生成品質と帰属率を大幅に向上させる。
さらに、NESTは、Llama-2-Chat 70Bに適用した場合の推論時間において1.8倍のスピードアップを達成することにより、生成速度を大幅に改善する。
論文 参考訳(メタデータ) (2024-05-29T17:55:03Z) - Time-LLM: Time Series Forecasting by Reprogramming Large Language Models [110.20279343734548]
時系列予測は多くの実世界の力学系において重要な意味を持つ。
時系列予測のための大規模言語モデルを再利用するための再プログラミングフレームワークであるTime-LLMを提案する。
Time-LLMは、最先端の特殊な予測モデルよりも優れた、強力な時系列学習者である。
論文 参考訳(メタデータ) (2023-10-03T01:31:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。