論文の概要: Adaptive Multi-Scale Decomposition Framework for Time Series Forecasting
- arxiv url: http://arxiv.org/abs/2406.03751v1
- Date: Thu, 6 Jun 2024 05:27:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-07 18:15:59.970083
- Title: Adaptive Multi-Scale Decomposition Framework for Time Series Forecasting
- Title(参考訳): 時系列予測のための適応型マルチスケール分解フレームワーク
- Authors: Yifan Hu, Peiyuan Liu, Peng Zhu, Dawei Cheng, Tao Dai,
- Abstract要約: 時系列予測(TSF)のための新しい適応型マルチスケール分解(AMD)フレームワークを提案する。
我々のフレームワークは時系列を複数のスケールで異なる時間パターンに分解し、MDM(Multi-Scale Decomposable Mixing)ブロックを活用する。
提案手法は,時間依存性とチャネル依存性の両方を効果的にモデル化し,マルチスケールデータ統合を改良するために自己相関を利用する。
- 参考スコア(独自算出の注目度): 26.141054975797868
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Transformer-based and MLP-based methods have emerged as leading approaches in time series forecasting (TSF). While Transformer-based methods excel in capturing long-range dependencies, they suffer from high computational complexities and tend to overfit. Conversely, MLP-based methods offer computational efficiency and adeptness in modeling temporal dynamics, but they struggle with capturing complex temporal patterns effectively. To address these challenges, we propose a novel MLP-based Adaptive Multi-Scale Decomposition (AMD) framework for TSF. Our framework decomposes time series into distinct temporal patterns at multiple scales, leveraging the Multi-Scale Decomposable Mixing (MDM) block to dissect and aggregate these patterns in a residual manner. Complemented by the Dual Dependency Interaction (DDI) block and the Adaptive Multi-predictor Synthesis (AMS) block, our approach effectively models both temporal and channel dependencies and utilizes autocorrelation to refine multi-scale data integration. Comprehensive experiments demonstrate that our AMD framework not only overcomes the limitations of existing methods but also consistently achieves state-of-the-art performance in both long-term and short-term forecasting tasks across various datasets, showcasing superior efficiency. Code is available at \url{https://github.com/TROUBADOUR000/AMD}
- Abstract(参考訳): 時系列予測(TSF)において,トランスフォーマーベースの手法とMLPベースの手法が主要なアプローチとして登場している。
Transformerベースの手法は、長距離依存を捉えるのに優れているが、高い計算複雑性に悩まされ、過度に適合する傾向がある。
逆に、MLPに基づく手法は、時間的ダイナミクスをモデル化する際の計算効率と適応性を提供するが、複雑な時間的パターンを効果的に捉えるのに苦労する。
これらの課題に対処するため、我々は、TSFのための新しいMLPベースの適応型マルチスケール分解(AMD)フレームワークを提案する。
我々のフレームワークは時系列を複数のスケールで異なる時間パターンに分解し、MDM(Multi-Scale Decomposable Mixing)ブロックを利用してこれらのパターンを残留的に分解・集約する。
本稿では,DDIブロックと適応型マルチ予測器合成(AMS)ブロックを補完し,時間依存とチャネル依存の両方を効果的にモデル化し,自動相関を用いてマルチスケールデータ統合を改良する。
総合的な実験により、我々のAMDフレームワークは既存の手法の限界を克服するだけでなく、様々なデータセットにわたる長期的および短期的な予測タスクにおける最先端のパフォーマンスを一貫して達成し、優れた効率を示す。
コードは \url{https://github.com/TROUBADOUR000/AMD} で入手できる。
関連論文リスト
- UmambaTSF: A U-shaped Multi-Scale Long-Term Time Series Forecasting Method Using Mamba [7.594115034632109]
本稿では,新しい時系列予測フレームワークであるUmambaTSFを提案する。
U字型エンコーダ・デコーダ多層パーセプトロン(MLP)のマルチスケール特徴抽出機能とMambaのロングシーケンス表現を統合する。
UmambaTSFは、広く使用されているベンチマークデータセットで最先端のパフォーマンスと優れた汎用性を達成する。
論文 参考訳(メタデータ) (2024-10-15T04:56:43Z) - TiVaT: Joint-Axis Attention for Time Series Forecasting with Lead-Lag Dynamics [5.016178141636157]
TiVaT(Time-Variable Transformer)は、時間と変数の依存関係を統合する新しいアーキテクチャである。
TiVaTは、さまざまなデータセットに対して、一貫して強力なパフォーマンスを提供する。
これによってTiVaTは、特に複雑で困難な依存関係を特徴とするデータセットの処理において、MTS予測の新しいベンチマークとして位置づけられる。
論文 参考訳(メタデータ) (2024-10-02T13:24:24Z) - UniTST: Effectively Modeling Inter-Series and Intra-Series Dependencies for Multivariate Time Series Forecasting [98.12558945781693]
フラット化されたパッチトークンに統一された注意機構を含む変圧器ベースモデルUniTSTを提案する。
提案モデルでは単純なアーキテクチャを採用しているが,時系列予測のためのいくつかのデータセットの実験で示されたような,魅力的な性能を提供する。
論文 参考訳(メタデータ) (2024-06-07T14:39:28Z) - PDMLP: Patch-based Decomposed MLP for Long-Term Time Series Forecasting [0.0]
近年, Transformer アーキテクチャを改良し, 長期時系列予測(LTSF)タスクの有効性を実証する研究が進められている。
これらのモデルの有効性は、配列の局所性を向上する採用されたパッチ機構に大きく寄与する。
さらに、Patch機構で強化された単純な線形層は、複雑なTransformerベースのLTSFモデルより優れている可能性が示唆されている。
論文 参考訳(メタデータ) (2024-05-22T12:12:20Z) - CATS: Enhancing Multivariate Time Series Forecasting by Constructing
Auxiliary Time Series as Exogenous Variables [9.95711569148527]
本稿では,2次元時間・コンテキストアテンション機構のように機能する補助時間系列(CATS)を構築する手法を提案する。
基本2層をコア予測器として用いながら、CATSは最先端を達成し、従来の多変量モデルと比較して複雑性とパラメータを著しく低減する。
論文 参考訳(メタデータ) (2024-03-04T01:52:40Z) - A Multi-Scale Decomposition MLP-Mixer for Time Series Analysis [14.40202378972828]
そこで我々は,MSD-Mixerを提案する。MSD-Mixerは,各レイヤの入力時系列を明示的に分解し,表現することを学ぶマルチスケール分解ミクサーである。
我々は,MSD-Mixerが他の最先端のアルゴリズムよりも効率よく優れていることを示す。
論文 参考訳(メタデータ) (2023-10-18T13:39:07Z) - Gait Recognition in the Wild with Multi-hop Temporal Switch [81.35245014397759]
野生での歩行認識は、より実践的な問題であり、マルチメディアとコンピュータビジョンのコミュニティの注目を集めています。
本稿では,現実のシーンにおける歩行パターンの効果的な時間的モデリングを実現するために,新しいマルチホップ時間スイッチ方式を提案する。
論文 参考訳(メタデータ) (2022-09-01T10:46:09Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
マルチスケールアテンション正規化フロー(MANF)と呼ばれる非自己回帰型ディープラーニングモデルを提案する。
我々のモデルは累積誤差の影響を回避し、時間の複雑さを増大させない。
本モデルは,多くの多変量データセット上での最先端性能を実現する。
論文 参考訳(メタデータ) (2022-05-16T07:53:42Z) - Deep Explicit Duration Switching Models for Time Series [84.33678003781908]
状態依存型と時間依存型の両方のスイッチングダイナミクスを識別できるフレキシブルモデルを提案する。
状態依存スイッチングは、リカレントな状態-スイッチ接続によって実現される。
時間依存スイッチング動作を改善するために、明示的な期間カウント変数が使用される。
論文 参考訳(メタデータ) (2021-10-26T17:35:21Z) - MuCAN: Multi-Correspondence Aggregation Network for Video
Super-Resolution [63.02785017714131]
ビデオ超解像(VSR)は、複数の低解像度フレームを使用して、各フレームに対して高解像度の予測を生成することを目的としている。
フレーム間およびフレーム内は、時間的および空間的情報を利用するための鍵となるソースである。
VSRのための効果的なマルチ対応アグリゲーションネットワーク(MuCAN)を構築した。
論文 参考訳(メタデータ) (2020-07-23T05:41:27Z) - Convolutional Tensor-Train LSTM for Spatio-temporal Learning [116.24172387469994]
本稿では,ビデオシーケンスの長期相関を効率的に学習できる高次LSTMモデルを提案する。
これは、時間をかけて畳み込み特徴を組み合わせることによって予測を行う、新しいテンソルトレインモジュールによって達成される。
この結果は,幅広いアプリケーションやデータセットにおいて,最先端のパフォーマンス向上を実現している。
論文 参考訳(メタデータ) (2020-02-21T05:00:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。