論文の概要: Learning Optimal Lattice Vector Quantizers for End-to-end Neural Image Compression
- arxiv url: http://arxiv.org/abs/2411.16119v1
- Date: Mon, 25 Nov 2024 06:05:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-26 14:19:00.384772
- Title: Learning Optimal Lattice Vector Quantizers for End-to-end Neural Image Compression
- Title(参考訳): エンドツーエンドニューラル画像圧縮のための最適格子ベクトル量子化器の学習
- Authors: Xi Zhang, Xiaolin Wu,
- Abstract要約: 格子ベクトル量子化(LVQ)は、機能間の依存関係をより効果的に活用できる魅力的な代替手段である。
従来のLVQ構造は、均一なソース分布のために設計・最適化されている。
本稿では,この弱点を克服するための新しい学習手法を提案する。
- 参考スコア(独自算出の注目度): 16.892815659154053
- License:
- Abstract: It is customary to deploy uniform scalar quantization in the end-to-end optimized Neural image compression methods, instead of more powerful vector quantization, due to the high complexity of the latter. Lattice vector quantization (LVQ), on the other hand, presents a compelling alternative, which can exploit inter-feature dependencies more effectively while keeping computational efficiency almost the same as scalar quantization. However, traditional LVQ structures are designed/optimized for uniform source distributions, hence nonadaptive and suboptimal for real source distributions of latent code space for Neural image compression tasks. In this paper, we propose a novel learning method to overcome this weakness by designing the rate-distortion optimal lattice vector quantization (OLVQ) codebooks with respect to the sample statistics of the latent features to be compressed. By being able to better fit the LVQ structures to any given latent sample distribution, the proposed OLVQ method improves the rate-distortion performances of the existing quantization schemes in neural image compression significantly, while retaining the amenability of uniform scalar quantization.
- Abstract(参考訳): より強力なベクトル量子化ではなく、エンドツーエンドに最適化されたニューラル画像圧縮手法で均一なスカラー量子化をデプロイするのが慣例である。
一方、格子ベクトル量子化(LVQ)は、スカラー量子化とほぼ同じ計算効率を維持しながら、機能間依存関係をより効果的に活用できる魅力的な代替手段を示す。
しかし、従来のLVQ構造は均一なソース分布のために設計・最適化されているため、ニューラル画像圧縮タスクの潜在符号空間の実際のソース分布に対して非適応的かつサブ最適である。
本稿では、圧縮対象の潜在特徴のサンプル統計について、速度歪み最適格子ベクトル量子化(OLVQ)符号ブックを設計し、この弱点を克服する新しい学習手法を提案する。
提案したOLVQ法は,LVQ構造を任意の潜在サンプル分布に適合させることにより,ニューラル画像圧縮における既存の量子化スキームの速度歪み性能を著しく向上し,均一なスカラー量子化の達成可能性を維持した。
関連論文リスト
- Q-VLM: Post-training Quantization for Large Vision-Language Models [73.19871905102545]
本稿では,大規模視覚言語モデル(LVLM)の学習後量子化フレームワークを提案する。
視覚言語モデル全体の離散化誤差に大きな影響を及ぼす層間依存関係を抽出し、この依存関係を最適な量子化戦略に組み込む。
実験の結果,提案手法はメモリを2.78倍圧縮し,出力速度を約13B LLaVAモデルで1.44倍向上させることができた。
論文 参考訳(メタデータ) (2024-10-10T17:02:48Z) - Approaching Rate-Distortion Limits in Neural Compression with Lattice
Transform Coding [33.377272636443344]
ニューラル圧縮設計では、ソースを潜在ベクトルに変換し、それを整数に丸め、エントロピーを符号化する。
我々は、i.d.配列に対して非常に最適であり、実際に、元のソースシーケンスのスカラー量子化を常に回復することを示した。
遅延空間におけるスカラー量子化の代わりに格子量子化を用いることにより、格子変換符号化(LTC)が様々な次元で最適なベクトル量子化を回復できることを実証する。
論文 参考訳(メタデータ) (2024-03-12T05:09:25Z) - Quantization Aware Factorization for Deep Neural Network Compression [20.04951101799232]
畳み込み層と完全連結層の分解は、ニューラルネットワークにおけるパラメータとFLOPを減らす効果的な方法である。
従来のトレーニング後量子化手法は重み付きネットワークに適用され、精度が低下する。
これは、分解された近似を量子化因子で直接発見するアルゴリズムを開発する動機となった。
論文 参考訳(メタデータ) (2023-08-08T21:38:02Z) - Frequency Disentangled Features in Neural Image Compression [13.016298207860974]
ニューラル画像圧縮ネットワークは、エントロピーモデルが潜在コードの真の分布とどの程度うまく一致しているかによって制御される。
本稿では,緩和されたスカラー量子化が低ビットレートを実現するのに役立つ特徴レベルの周波数歪みを提案する。
提案するネットワークは,手作業によるコーデックだけでなく,空間的自己回帰エントロピーモデル上に構築されたニューラルネットワークベースのコーデックよりも優れている。
論文 参考訳(メタデータ) (2023-08-04T14:55:44Z) - Towards Accurate Post-training Quantization for Diffusion Models [73.19871905102545]
本稿では,効率的な画像生成のための拡散モデル(ADP-DM)の高精度なデータフリーポストトレーニング量子化フレームワークを提案する。
提案手法は, 拡散モデルの学習後の量子化を, 同様の計算コストで, 非常に大きなマージンで高速化する。
論文 参考訳(メタデータ) (2023-05-30T04:00:35Z) - LVQAC: Lattice Vector Quantization Coupled with Spatially Adaptive
Companding for Efficient Learned Image Compression [24.812267280543693]
本稿では,空間適応型コンパウンディング(LVQAC)マッピングを併用した新しい格子ベクトル量子化方式を提案する。
エンドツーエンドのCNN画像圧縮モデルでは、一様量子化器をLVQACで置き換えることにより、モデルの複雑さを大幅に増大させることなく、より優れたレート歪み性能が得られる。
論文 参考訳(メタデータ) (2023-03-25T23:34:15Z) - Regularized Vector Quantization for Tokenized Image Synthesis [126.96880843754066]
画像の離散表現への量子化は、統合生成モデリングにおける根本的な問題である。
決定論的量子化は、厳しいコードブックの崩壊と推論段階の誤調整に悩まされ、一方、量子化は、コードブックの利用率の低下と再構築の目的に悩まされる。
本稿では、2つの視点から正規化を適用することにより、上記の問題を効果的に緩和できる正規化ベクトル量子化フレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-11T15:20:54Z) - Unified Multivariate Gaussian Mixture for Efficient Neural Image
Compression [151.3826781154146]
先行変数と超優先度を持つ潜伏変数は、変動画像圧縮において重要な問題である。
ベクトル化された視点で潜伏変数を観察する際、相関関係や相関関係は存在する。
当社のモデルでは、速度歪曲性能が向上し、圧縮速度が3.18倍に向上した。
論文 参考訳(メタデータ) (2022-03-21T11:44:17Z) - Nonuniform-to-Uniform Quantization: Towards Accurate Quantization via
Generalized Straight-Through Estimation [48.838691414561694]
非一様量子化(英: Nonuniform-to-Uniform Quantization、N2UQ)は、ハードウェアフレンドリーで効率的な非一様法の強力な表現能力を維持できる方法である。
N2UQはImageNet上で最先端の非一様量子化法を0.71.8%上回る。
論文 参考訳(メタデータ) (2021-11-29T18:59:55Z) - BSQ: Exploring Bit-Level Sparsity for Mixed-Precision Neural Network
Quantization [32.770842274996774]
混合精度量子化は、ディープニューラルネットワークの性能と圧縮率の最適なトレードオフを実現できる可能性がある。
従来の方法は、小さな手作業で設計された検索空間のみを調べるか、面倒なニューラルネットワークアーキテクチャ検索を使用して広大な検索空間を探索する。
本研究では、ビットレベルスパーシティを誘導する新たな角度から、混合精度量子化に取り組むためのビットレベルスパーシティ量子化(BSQ)を提案する。
論文 参考訳(メタデータ) (2021-02-20T22:37:41Z) - Optimal Gradient Quantization Condition for Communication-Efficient
Distributed Training [99.42912552638168]
勾配の通信は、コンピュータビジョンアプリケーションで複数のデバイスでディープニューラルネットワークをトレーニングするのに費用がかかる。
本研究は,textbfANY勾配分布に対する二値および多値勾配量子化の最適条件を導出する。
最適条件に基づいて, 偏差BinGradと非偏差ORQの2値勾配量子化と多値勾配量子化の2つの新しい量子化手法を開発した。
論文 参考訳(メタデータ) (2020-02-25T18:28:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。