論文の概要: Hallmarks of Optimization Trajectories in Neural Networks: Directional Exploration and Redundancy
- arxiv url: http://arxiv.org/abs/2403.07379v2
- Date: Mon, 24 Jun 2024 04:53:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-26 01:31:59.815249
- Title: Hallmarks of Optimization Trajectories in Neural Networks: Directional Exploration and Redundancy
- Title(参考訳): ニューラルネットワークにおける最適化軌道の目印:方向探索と冗長性
- Authors: Sidak Pal Singh, Bobby He, Thomas Hofmann, Bernhard Schölkopf,
- Abstract要約: 最適化トラジェクトリのリッチな方向構造をポイントワイズパラメータで解析する。
トレーニング中のスカラーバッチノルムパラメータは,ネットワーク全体のトレーニング性能と一致していることを示す。
- 参考スコア(独自算出の注目度): 75.15685966213832
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a fresh take on understanding the mechanisms of neural networks by analyzing the rich directional structure of optimization trajectories, represented by their pointwise parameters. Towards this end, we introduce some natural notions of the complexity of optimization trajectories, both qualitative and quantitative, which hallmark the directional nature of optimization in neural networks: when is there redundancy, and when exploration. We use them to reveal the inherent nuance and interplay involved between various optimization choices, such as momentum and weight decay. Further, the trajectory perspective helps us see the effect of scale on regularizing the directional nature of trajectories, and as a by-product, we also observe an intriguing heterogeneity of Q,K,V dynamics in the middle attention layers in LLMs and which is homogenized by scale. Importantly, we put the significant directional redundancy observed to the test by demonstrating that training only scalar batchnorm parameters some while into training matches the performance of training the entire network, which thus exhibits the potential of hybrid optimization schemes that are geared towards efficiency.
- Abstract(参考訳): 本稿では,最適化軌道のリッチな方向構造を解析することにより,ニューラルネットワークのメカニズムを新たに理解する手法を提案する。
この目的に向けて、ニューラルネットワークにおける最適化の方向性を示す定性的かつ定量的な最適化軌跡の複雑さという自然な概念を紹介します。
運動量や重みの減衰など、様々な最適化選択の間の固有のニュアンスや相互作用を明らかにするためにそれらを使用します。
さらに、軌跡パースペクティブは、軌跡の方向特性の正則化におけるスケールの効果を確認するのに役立ち、副生成物として、LLMの中間注意層におけるQ,K,Vダイナミクスの興味深い不均一性を観察し、スケールによって均質化する。
重要なことは、トレーニング中にスカラーバッチノルムパラメータのみをトレーニングする場合、ネットワーク全体のトレーニング性能と一致させることで、テストで観察される重要な方向性の冗長性を証明し、効率性を重視したハイブリッド最適化スキームの可能性を示すことである。
関連論文リスト
- An Adaptive Tangent Feature Perspective of Neural Networks [4.900298402690262]
特徴量の線形変換を考察し、パラメータと双線型制約による変換を共同で最適化する。
ニューラルネットワークの構造に特化して、機能がどのように変化し、カーネル関数が変化するかについての洞察を得る。
実ニューラルネットワークのカーネルアライメントにおける理論的観察を検証する。
論文 参考訳(メタデータ) (2023-08-29T17:57:20Z) - Neural Characteristic Activation Analysis and Geometric Parameterization for ReLU Networks [2.2713084727838115]
本稿では,個々のニューロンの特徴的活性化境界を調べることによって,ReLUネットワークのトレーニングダイナミクスを解析するための新しいアプローチを提案する。
提案手法は,コンバージェンス最適化におけるニューラルネットワークのパラメータ化と正規化において重要な不安定性を示し,高速収束を阻害し,性能を損なう。
論文 参考訳(メタデータ) (2023-05-25T10:19:13Z) - Reparameterization through Spatial Gradient Scaling [69.27487006953852]
リパラメータ化は、学習中に畳み込み層を等価なマルチブランチ構造に変換することによって、ディープニューラルネットワークの一般化を改善することを目的としている。
本稿では,畳み込みネットワークにおける重み間の学習焦点を再分配する空間勾配スケーリング手法を提案する。
論文 参考訳(メタデータ) (2023-03-05T17:57:33Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
物理インフォームドニューラルネットワーク(PINN)は、前方および逆微分方程式問題の解法として効果的に実証されている。
PINNは、近似すべきターゲット関数が高周波またはマルチスケールの特徴を示す場合、トレーニング障害に閉じ込められる。
本稿では,暗黙的勾配降下法(ISGD)を用いてPINNを訓練し,トレーニングプロセスの安定性を向上させることを提案する。
論文 参考訳(メタデータ) (2023-03-03T08:17:47Z) - Training Scale-Invariant Neural Networks on the Sphere Can Happen in
Three Regimes [3.808063547958558]
本研究では、固定ELRを用いて、球面上でのスケール不変ニューラルネットワークのトレーニング特性について検討する。
本研究では, 収束, カオス平衡, 分散という, ELR の値に依存する3つの訓練条件を見いだす。
論文 参考訳(メタデータ) (2022-09-08T10:30:05Z) - A Dynamical View on Optimization Algorithms of Overparameterized Neural
Networks [23.038631072178735]
我々は、一般的に使用される最適化アルゴリズムの幅広いクラスについて考察する。
その結果、ニューラルネットワークの収束挙動を利用することができる。
このアプローチは他の最適化アルゴリズムやネットワーク理論にも拡張できると考えています。
論文 参考訳(メタデータ) (2020-10-25T17:10:22Z) - Optimizing Mode Connectivity via Neuron Alignment [84.26606622400423]
経験的に、損失関数の局所ミニマは、損失がほぼ一定であるようなモデル空間の学習曲線で接続することができる。
本稿では,ネットワークの重み変化を考慮し,対称性がランドスケープ・コネクティビティに与える影響を明らかにするための,より一般的な枠組みを提案する。
論文 参考訳(メタデータ) (2020-09-05T02:25:23Z) - A Differential Game Theoretic Neural Optimizer for Training Residual
Networks [29.82841891919951]
本稿では、残差接続と畳み込み層の両方を受け入れる一般化微分動的プログラミング(DDP)ニューラルアーキテクチャを提案する。
得られた最適制御表現は、トレーニング残余ネットワークを、状態拡張システム上での協調的軌道最適化と解釈できるゲーム論的視点を許容する。
論文 参考訳(メタデータ) (2020-07-17T10:19:17Z) - Understanding the Effects of Data Parallelism and Sparsity on Neural
Network Training [126.49572353148262]
ニューラルネットワークトレーニングにおける2つの要因として,データ並列性と疎性について検討する。
有望なメリットにもかかわらず、ニューラルネットワークトレーニングに対する彼らの影響を理解することは、依然として明白である。
論文 参考訳(メタデータ) (2020-03-25T10:49:22Z) - Dynamic Hierarchical Mimicking Towards Consistent Optimization
Objectives [73.15276998621582]
一般化能力を高めたCNN訓練を推進するための汎用的特徴学習機構を提案する。
DSNに部分的にインスパイアされた私たちは、ニューラルネットワークの中間層から微妙に設計されたサイドブランチをフォークしました。
カテゴリ認識タスクとインスタンス認識タスクの両方の実験により,提案手法の大幅な改善が示された。
論文 参考訳(メタデータ) (2020-03-24T09:56:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。