論文の概要: Auxiliary CycleGAN-guidance for Task-Aware Domain Translation from Duplex to Monoplex IHC Images
- arxiv url: http://arxiv.org/abs/2403.07389v2
- Date: Tue, 22 Oct 2024 14:07:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-23 14:25:47.978114
- Title: Auxiliary CycleGAN-guidance for Task-Aware Domain Translation from Duplex to Monoplex IHC Images
- Title(参考訳): Duplex から Monoplex IHC 画像へのタスク認識ドメイン翻訳のための補助サイクルGANガイダンス
- Authors: Nicolas Brieu, Nicolas Triltsch, Philipp Wortmann, Dominik Winter, Shashank Saran, Marlon Rebelatto, Günter Schmidt,
- Abstract要約: サイクル生成共役ネットワーク(GAN)は確立されているが、関連するサイクル一貫性の制約は、2つの領域の間に可逆写像が存在することに依存する。
我々は,新しいトレーニングデザインの導入を通じて,免疫蛍光(IF)画像の集合を補助的未ペア画像領域として活用する代替的制約を提案する。
- 参考スコア(独自算出の注目度): 0.3769303106863454
- License:
- Abstract: Generative models enable the translation from a source image domain where readily trained models are available to a target domain unseen during training. While Cycle Generative Adversarial Networks (GANs) are well established, the associated cycle consistency constrain relies on that an invertible mapping exists between the two domains. This is, however, not the case for the translation between images stained with chromogenic monoplex and duplex immunohistochemistry (IHC) assays. Focusing on the translation from the latter to the first, we propose - through the introduction of a novel training design, an alternative constrain leveraging a set of immunofluorescence (IF) images as an auxiliary unpaired image domain. Quantitative and qualitative results on a downstream segmentation task show the benefit of the proposed method in comparison to baseline approaches.
- Abstract(参考訳): 生成モデルは、トレーニング中に見つからないターゲットドメインに容易にトレーニングされたモデルが利用できるソースイメージドメインからの変換を可能にする。
Cycle Generative Adversarial Networks (GAN) は確立されているが、関連するサイクル一貫性の制約は、2つの領域の間に可逆写像が存在することに依存する。
しかし、発色モノプレックスと二重免疫組織化学(IHC)アッセイで染色された画像間の翻訳では、これは当てはまらない。
後者から第1への翻訳に焦点をあてて,新しいトレーニング設計の導入により,免疫蛍光(IF)画像の集合を補助的未ペア画像領域として活用する代替的制約を提案する。
下流セグメンテーションタスクにおける定量的および定性的な結果は,ベースラインアプローチと比較して提案手法の利点を示す。
関連論文リスト
- I2I-Galip: Unsupervised Medical Image Translation Using Generative Adversarial CLIP [30.506544165999564]
ペアの例が存在しないため、画像から画像への翻訳は難しい作業である。
我々はイメージ・ツー・イメージ・ジェネレーティブ・アドバイザリアル・CLIP (I2I-Galip) という新しい画像・画像変換フレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-19T01:44:50Z) - MIDMs: Matching Interleaved Diffusion Models for Exemplar-based Image
Translation [29.03892463588357]
マッチング型インターリーブド拡散モデル (MIDM) と呼ばれる, 画像翻訳のための新しい手法を提案する。
拡散に基づくマッチング・アンド・ジェネレーション・フレームワークを定式化し、ドメイン間マッチングと拡散ステップを潜時空間でインターリーブする。
拡散過程の信頼性を向上させるため,サイクル整合性を用いた信頼度対応プロセスの設計を行い,信頼度の高い領域のみを考える。
論文 参考訳(メタデータ) (2022-09-22T14:43:52Z) - Unsupervised Medical Image Translation with Adversarial Diffusion Models [0.2770822269241974]
ソース・トゥ・ターゲット・モダリティ変換による画像の欠落の計算は、医用画像プロトコルの多様性を向上させることができる。
本稿では, 医用画像翻訳の性能向上のための逆拡散モデルであるSynDiffを提案する。
論文 参考訳(メタデータ) (2022-07-17T15:53:24Z) - Marginal Contrastive Correspondence for Guided Image Generation [58.0605433671196]
例題に基づく画像翻訳は、条件入力と2つの異なる領域からの例題間の密接な対応を確立する。
既存の作業は、2つのドメインにまたがる機能的距離を最小化することで、ドメイン間の通信を暗黙的に構築する。
本稿では,MCL-Net(Marginal Contrastive Learning Network)の設計を行った。
論文 参考訳(メタデータ) (2022-04-01T13:55:44Z) - Cross-View Panorama Image Synthesis [68.35351563852335]
PanoGANは、新しい敵対的フィードバックGANフレームワークである。
PanoGANは、最先端のアプローチよりもより説得力のある、高品質なパノラマ画像生成を可能にする。
論文 参考訳(メタデータ) (2022-03-22T15:59:44Z) - Unsupervised Domain Adaptation with Semantic Consistency across
Heterogeneous Modalities for MRI Prostate Lesion Segmentation [19.126306953075275]
セマンティック一貫性を促進する2つの新しい損失関数を導入する。
特に,高度な拡散強調画像技術であるVERDICT-MRIの性能向上の課題に対処する。
論文 参考訳(メタデータ) (2021-09-19T17:33:26Z) - Smoothing the Disentangled Latent Style Space for Unsupervised
Image-to-Image Translation [56.55178339375146]
イメージ・ツー・イメージ(I2I)マルチドメイン翻訳モデルは通常、セマンティックな結果の品質を用いて評価される。
本稿では,翻訳ネットワークがスムーズでゆがみのあるラテントスタイル空間を学習するのに役立つ,3つの特定の損失に基づく新たなトレーニングプロトコルを提案する。
論文 参考訳(メタデータ) (2021-06-16T17:58:21Z) - Cross-Modality Brain Tumor Segmentation via Bidirectional
Global-to-Local Unsupervised Domain Adaptation [61.01704175938995]
本論文では,UDAスキームに基づくBiGL(Bidirectional Global-to-Local)適応フレームワークを提案する。
具体的には、脳腫瘍をセグメント化するために、双方向画像合成およびセグメンテーションモジュールを提案する。
提案手法は, 最先端の非教師なし領域適応法を大きなマージンで上回っている。
論文 参考訳(メタデータ) (2021-05-17T10:11:45Z) - Learning Unsupervised Cross-domain Image-to-Image Translation Using a
Shared Discriminator [2.1377923666134118]
教師なし画像画像変換は、ソースドメインから画像を変換して、ソースターゲット画像ペアを使用することなく、ターゲットドメインで画像を生成するために使用される。
本稿では,2つのGAN間の1つの共有判別器を用いた新しい手法を提案する。
提案手法は,注意機構を付加せずにも,注意に基づく手法と同等に動作し,同等の画質の画像を生成できることが示唆された。
論文 参考訳(メタデータ) (2021-02-09T08:26:23Z) - Image-to-image Mapping with Many Domains by Sparse Attribute Transfer [71.28847881318013]
教師なし画像と画像の変換は、2つの領域間の一対のマッピングを、ポイント間の既知のペアワイズ対応なしで学習することで構成される。
現在の慣例は、サイクル一貫性のあるGANでこのタスクにアプローチすることです。
そこで本研究では,ジェネレータを直接,潜在層における単純なスパース変換に制限する代替手法を提案する。
論文 参考訳(メタデータ) (2020-06-23T19:52:23Z) - Unsupervised Bidirectional Cross-Modality Adaptation via Deeply
Synergistic Image and Feature Alignment for Medical Image Segmentation [73.84166499988443]
我々は、Synergistic Image and Feature Alignment (SIFA)と名付けられた新しい教師なしドメイン適応フレームワークを提案する。
提案するSIFAは、画像と特徴の両方の観点から、ドメインの相乗的アライメントを行う。
2つの異なるタスクに対する実験結果から,SIFA法は未ラベル対象画像のセグメンテーション性能を向上させるのに有効であることが示された。
論文 参考訳(メタデータ) (2020-02-06T13:49:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。