FeTrIL++: Feature Translation for Exemplar-Free Class-Incremental
Learning with Hill-Climbing
- URL: http://arxiv.org/abs/2403.07406v1
- Date: Tue, 12 Mar 2024 08:34:05 GMT
- Title: FeTrIL++: Feature Translation for Exemplar-Free Class-Incremental
Learning with Hill-Climbing
- Authors: Eduard Hogea, Adrian Popescu, Darian Onchis, Gr\'egoire Petit
- Abstract summary: Exemplar-free class-incremental learning (EFCIL) poses significant challenges, primarily due to catastrophic forgetting.
Traditional EFCIL approaches typically skew towards either model plasticity through successive fine-tuning or stability.
This paper builds upon the foundational FeTrIL framework to examine the efficacy of various oversampling techniques and dynamic optimization strategies.
- Score: 3.533544633664583
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Exemplar-free class-incremental learning (EFCIL) poses significant
challenges, primarily due to catastrophic forgetting, necessitating a delicate
balance between stability and plasticity to accurately recognize both new and
previous classes. Traditional EFCIL approaches typically skew towards either
model plasticity through successive fine-tuning or stability by employing a
fixed feature extractor beyond the initial incremental state. Building upon the
foundational FeTrIL framework, our research extends into novel experimental
domains to examine the efficacy of various oversampling techniques and dynamic
optimization strategies across multiple challenging datasets and incremental
settings. We specifically explore how oversampling impacts accuracy relative to
feature availability and how different optimization methodologies, including
dynamic recalibration and feature pool diversification, influence incremental
learning outcomes. The results from these comprehensive experiments, conducted
on CIFAR100, Tiny-ImageNet, and an ImageNet-Subset, under-score the superior
performance of FeTrIL in balancing accuracy for both new and past classes
against ten contemporary methods. Notably, our extensions reveal the nuanced
impacts of oversampling and optimization on EFCIL, contributing to a more
refined understanding of feature-space manipulation for class incremental
learning. FeTrIL and its extended analysis in this paper FeTrIL++ pave the way
for more adaptable and efficient EFCIL methodologies, promising significant
improvements in handling catastrophic forgetting without the need for
exemplars.
Related papers
- See Further for Parameter Efficient Fine-tuning by Standing on the Shoulders of Decomposition [56.87609859444084]
parameter-efficient fine-tuning (PEFT) focuses on optimizing a select subset of parameters while keeping the rest fixed, significantly lowering computational and storage overheads.
We take the first step to unify all approaches by dissecting them from a decomposition perspective.
We introduce two novel PEFT methods alongside a simple yet effective framework designed to enhance the performance of PEFT techniques across various applications.
arXiv Detail & Related papers (2024-07-07T15:44:42Z) - Contrastive Learning Via Equivariant Representation [19.112460889771423]
We propose CLeVER, a novel equivariant contrastive learning framework compatible with augmentation strategies of arbitrary complexity.
Experimental results demonstrate that CLeVER effectively extracts and incorporates equivariant information from practical natural images.
arXiv Detail & Related papers (2024-06-01T01:53:51Z) - FeTT: Continual Class Incremental Learning via Feature Transformation Tuning [19.765229703131876]
Continual learning (CL) aims to extend deep models from static and enclosed environments to dynamic and complex scenarios.
Recent CL models have gradually shifted towards the utilization of pre-trained models with parameter-efficient fine-tuning strategies.
This paper proposes feature transformation tuning (FeTT) model to non-parametrically fine-tune backbone features across all tasks.
arXiv Detail & Related papers (2024-05-20T06:33:50Z) - Beyond Single-Model Views for Deep Learning: Optimization versus
Generalizability of Stochastic Optimization Algorithms [13.134564730161983]
This paper adopts a novel approach to deep learning optimization, focusing on gradient descent (SGD) and its variants.
We show that SGD and its variants demonstrate performance on par with flat-minimas like SAM, albeit with half the gradient evaluations.
Our study uncovers several key findings regarding the relationship between training loss and hold-out accuracy, as well as the comparable performance of SGD and noise-enabled variants.
arXiv Detail & Related papers (2024-03-01T14:55:22Z) - Exploring Example Influence in Continual Learning [26.85320841575249]
Continual Learning (CL) sequentially learns new tasks like human beings, with the goal to achieve better Stability (S) and Plasticity (P)
It is valuable to explore the influence difference on S and P among training examples, which may improve the learning pattern towards better SP.
We propose a simple yet effective MetaSP algorithm to simulate the two key steps in the perturbation of IF and obtain the S- and P-aware example influence.
arXiv Detail & Related papers (2022-09-25T15:17:37Z) - FOSTER: Feature Boosting and Compression for Class-Incremental Learning [52.603520403933985]
Deep neural networks suffer from catastrophic forgetting when learning new categories.
We propose a novel two-stage learning paradigm FOSTER, empowering the model to learn new categories adaptively.
arXiv Detail & Related papers (2022-04-10T11:38:33Z) - CAFE: Learning to Condense Dataset by Aligning Features [72.99394941348757]
We propose a novel scheme to Condense dataset by Aligning FEatures (CAFE)
At the heart of our approach is an effective strategy to align features from the real and synthetic data across various scales.
We validate the proposed CAFE across various datasets, and demonstrate that it generally outperforms the state of the art.
arXiv Detail & Related papers (2022-03-03T05:58:49Z) - Revisiting Consistency Regularization for Semi-Supervised Learning [80.28461584135967]
We propose an improved consistency regularization framework by a simple yet effective technique, FeatDistLoss.
Experimental results show that our model defines a new state of the art for various datasets and settings.
arXiv Detail & Related papers (2021-12-10T20:46:13Z) - Exploring Complementary Strengths of Invariant and Equivariant
Representations for Few-Shot Learning [96.75889543560497]
In many real-world problems, collecting a large number of labeled samples is infeasible.
Few-shot learning is the dominant approach to address this issue, where the objective is to quickly adapt to novel categories in presence of a limited number of samples.
We propose a novel training mechanism that simultaneously enforces equivariance and invariance to a general set of geometric transformations.
arXiv Detail & Related papers (2021-03-01T21:14:33Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
We show that a host of variations can be covered in a unified framework that we propose.
We prove the convergence of this novel scheme and rigorously evaluate its empirical performance on ResNet, LSTM, and Transformer.
arXiv Detail & Related papers (2020-06-10T08:22:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.