Exploring Example Influence in Continual Learning
- URL: http://arxiv.org/abs/2209.12241v1
- Date: Sun, 25 Sep 2022 15:17:37 GMT
- Title: Exploring Example Influence in Continual Learning
- Authors: Qing Sun and Fan Lyu and Fanhua Shang and Wei Feng and Liang Wan
- Abstract summary: Continual Learning (CL) sequentially learns new tasks like human beings, with the goal to achieve better Stability (S) and Plasticity (P)
It is valuable to explore the influence difference on S and P among training examples, which may improve the learning pattern towards better SP.
We propose a simple yet effective MetaSP algorithm to simulate the two key steps in the perturbation of IF and obtain the S- and P-aware example influence.
- Score: 26.85320841575249
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Continual Learning (CL) sequentially learns new tasks like human beings, with
the goal to achieve better Stability (S, remembering past tasks) and Plasticity
(P, adapting to new tasks). Due to the fact that past training data is not
available, it is valuable to explore the influence difference on S and P among
training examples, which may improve the learning pattern towards better SP.
Inspired by Influence Function (IF), we first study example influence via
adding perturbation to example weight and computing the influence derivation.
To avoid the storage and calculation burden of Hessian inverse in neural
networks, we propose a simple yet effective MetaSP algorithm to simulate the
two key steps in the computation of IF and obtain the S- and P-aware example
influence. Moreover, we propose to fuse two kinds of example influence by
solving a dual-objective optimization problem, and obtain a fused influence
towards SP Pareto optimality. The fused influence can be used to control the
update of model and optimize the storage of rehearsal. Empirical results show
that our algorithm significantly outperforms state-of-the-art methods on both
task- and class-incremental benchmark CL datasets.
Related papers
- Most Influential Subset Selection: Challenges, Promises, and Beyond [9.479235005673683]
We study the Most Influential Subset Selection (MISS) problem, which aims to identify a subset of training samples with the greatest collective influence.
We conduct a comprehensive analysis of the prevailing approaches in MISS, elucidating their strengths and weaknesses.
We demonstrate that an adaptive version of theses which applies them iteratively, can effectively capture the interactions among samples.
arXiv Detail & Related papers (2024-09-25T20:00:23Z) - Denoising Pre-Training and Customized Prompt Learning for Efficient Multi-Behavior Sequential Recommendation [69.60321475454843]
We propose DPCPL, the first pre-training and prompt-tuning paradigm tailored for Multi-Behavior Sequential Recommendation.
In the pre-training stage, we propose a novel Efficient Behavior Miner (EBM) to filter out the noise at multiple time scales.
Subsequently, we propose to tune the pre-trained model in a highly efficient manner with the proposed Customized Prompt Learning (CPL) module.
arXiv Detail & Related papers (2024-08-21T06:48:38Z) - In2Core: Leveraging Influence Functions for Coreset Selection in Instruction Finetuning of Large Language Models [37.45103473809928]
We propose the In2Core algorithm, which selects a coreset by analyzing the correlation between training and evaluation samples with a trained model.
By applying our algorithm to instruction fine-tuning data of LLMs, we can achieve similar performance with just 50% of the training data.
arXiv Detail & Related papers (2024-08-07T05:48:05Z) - FeTrIL++: Feature Translation for Exemplar-Free Class-Incremental
Learning with Hill-Climbing [3.533544633664583]
Exemplar-free class-incremental learning (EFCIL) poses significant challenges, primarily due to catastrophic forgetting.
Traditional EFCIL approaches typically skew towards either model plasticity through successive fine-tuning or stability.
This paper builds upon the foundational FeTrIL framework to examine the efficacy of various oversampling techniques and dynamic optimization strategies.
arXiv Detail & Related papers (2024-03-12T08:34:05Z) - On Task Performance and Model Calibration with Supervised and
Self-Ensembled In-Context Learning [71.44986275228747]
In-context learning (ICL) has become an efficient approach propelled by the recent advancements in large language models (LLMs)
However, both paradigms are prone to suffer from the critical problem of overconfidence (i.e., miscalibration)
arXiv Detail & Related papers (2023-12-21T11:55:10Z) - Adaptive Weighted Co-Learning for Cross-Domain Few-Shot Learning [23.615250207134004]
Cross-domain few-shot learning (CDFSL) induces a very challenging adaptation problem.
We propose a simple Adaptive Weighted Co-Learning (AWCoL) method to address the CDFSL challenge.
Comprehensive experiments are conducted on multiple benchmark datasets and the empirical results demonstrate that the proposed method produces state-of-the-art CDFSL performance.
arXiv Detail & Related papers (2023-12-06T22:09:52Z) - Robust Learning with Progressive Data Expansion Against Spurious
Correlation [65.83104529677234]
We study the learning process of a two-layer nonlinear convolutional neural network in the presence of spurious features.
Our analysis suggests that imbalanced data groups and easily learnable spurious features can lead to the dominance of spurious features during the learning process.
We propose a new training algorithm called PDE that efficiently enhances the model's robustness for a better worst-group performance.
arXiv Detail & Related papers (2023-06-08T05:44:06Z) - Effective Decision Boundary Learning for Class Incremental Learning [17.716035569936384]
Rehearsal approaches in class incremental learning (CIL) suffer from decision boundary overfitting to new classes.
We present a simple but effective approach to tackle these two factors.
Experiments show that the proposedL achieves the proposedL state-of-the-art performances on several CIL benchmarks.
arXiv Detail & Related papers (2023-01-12T18:04:51Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
It remains unclear theoretically and empirically how latent variable models may facilitate learning, planning, and exploration to improve the sample efficiency of model-based reinforcement learning.
We provide a representation view of the latent variable models for state-action value functions, which allows both tractable variational learning algorithm and effective implementation of the optimism/pessimism principle.
In particular, we propose a computationally efficient planning algorithm with UCB exploration by incorporating kernel embeddings of latent variable models.
arXiv Detail & Related papers (2022-12-17T00:26:31Z) - Multi-Stage Influence Function [97.19210942277354]
We develop a multi-stage influence function score to track predictions from a finetuned model all the way back to the pretraining data.
We study two different scenarios with the pretrained embeddings fixed or updated in the finetuning tasks.
arXiv Detail & Related papers (2020-07-17T16:03:11Z) - Influence Functions in Deep Learning Are Fragile [52.31375893260445]
influence functions approximate the effect of samples in test-time predictions.
influence estimates are fairly accurate for shallow networks.
Hessian regularization is important to get highquality influence estimates.
arXiv Detail & Related papers (2020-06-25T18:25:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.