Uncertainty-guided Contrastive Learning for Single Source Domain Generalisation
- URL: http://arxiv.org/abs/2403.07514v2
- Date: Thu, 14 Mar 2024 23:21:58 GMT
- Title: Uncertainty-guided Contrastive Learning for Single Source Domain Generalisation
- Authors: Anastasios Arsenos, Dimitrios Kollias, Evangelos Petrongonas, Christos Skliros, Stefanos Kollias,
- Abstract summary: In this paper, we introduce a novel model referred to as Contrastive Uncertainty Domain Generalisation Network (CUDGNet)
The key idea is to augment the source capacity in both input and label spaces through the fictitious domain generator.
Our method also provides efficient uncertainty estimation at inference time from a single forward pass through the generator subnetwork.
- Score: 15.907643838530655
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In the context of single domain generalisation, the objective is for models that have been exclusively trained on data from a single domain to demonstrate strong performance when confronted with various unfamiliar domains. In this paper, we introduce a novel model referred to as Contrastive Uncertainty Domain Generalisation Network (CUDGNet). The key idea is to augment the source capacity in both input and label spaces through the fictitious domain generator and jointly learn the domain invariant representation of each class through contrastive learning. Extensive experiments on two Single Source Domain Generalisation (SSDG) datasets demonstrate the effectiveness of our approach, which surpasses the state-of-the-art single-DG methods by up to $7.08\%$. Our method also provides efficient uncertainty estimation at inference time from a single forward pass through the generator subnetwork.
Related papers
- PracticalDG: Perturbation Distillation on Vision-Language Models for Hybrid Domain Generalization [24.413415998529754]
We propose a new benchmark Hybrid Domain Generalization (HDG) and a novel metric $H2$-CV, which construct various splits to assess the robustness of algorithms.
Our method outperforms state-of-the-art algorithms on multiple datasets, especially improving the robustness when confronting data scarcity.
arXiv Detail & Related papers (2024-04-13T13:41:13Z) - CLIP the Gap: A Single Domain Generalization Approach for Object
Detection [60.20931827772482]
Single Domain Generalization tackles the problem of training a model on a single source domain so that it generalizes to any unseen target domain.
We propose to leverage a pre-trained vision-language model to introduce semantic domain concepts via textual prompts.
We achieve this via a semantic augmentation strategy acting on the features extracted by the detector backbone, as well as a text-based classification loss.
arXiv Detail & Related papers (2023-01-13T12:01:18Z) - Adaptive Domain Generalization via Online Disagreement Minimization [17.215683606365445]
Domain Generalization aims to safely transfer a model to unseen target domains.
AdaODM adaptively modifies the source model at test time for different target domains.
Results show AdaODM stably improves the generalization capacity on unseen domains.
arXiv Detail & Related papers (2022-08-03T11:51:11Z) - Compound Domain Generalization via Meta-Knowledge Encoding [55.22920476224671]
We introduce Style-induced Domain-specific Normalization (SDNorm) to re-normalize the multi-modal underlying distributions.
We harness the prototype representations, the centroids of classes, to perform relational modeling in the embedding space.
Experiments on four standard Domain Generalization benchmarks reveal that COMEN exceeds the state-of-the-art performance without the need of domain supervision.
arXiv Detail & Related papers (2022-03-24T11:54:59Z) - Instrumental Variable-Driven Domain Generalization with Unobserved
Confounders [53.735614014067394]
Domain generalization (DG) aims to learn from multiple source domains a model that can generalize well on unseen target domains.
We propose an instrumental variable-driven DG method (IV-DG) by removing the bias of the unobserved confounders with two-stage learning.
In the first stage, it learns the conditional distribution of the input features of one domain given input features of another domain.
In the second stage, it estimates the relationship by predicting labels with the learned conditional distribution.
arXiv Detail & Related papers (2021-10-04T13:32:57Z) - Learning to Diversify for Single Domain Generalization [46.35670520201863]
Domain generalization (DG) aims to generalize a model trained on multiple source (i.e., training) domains to a distributionally different target (i.e., test) domain.
This paper considers a more realistic yet challenging scenario, namely Single Domain Generalization (Single-DG), where only one source domain is available for training.
In this scenario, the limited diversity may jeopardize the model generalization on unseen target domains.
We propose a style-complement module to enhance the generalization power of the model by synthesizing images from diverse distributions that are complementary to the source ones.
arXiv Detail & Related papers (2021-08-26T12:04:32Z) - Inferring Latent Domains for Unsupervised Deep Domain Adaptation [54.963823285456925]
Unsupervised Domain Adaptation (UDA) refers to the problem of learning a model in a target domain where labeled data are not available.
This paper introduces a novel deep architecture which addresses the problem of UDA by automatically discovering latent domains in visual datasets.
We evaluate our approach on publicly available benchmarks, showing that it outperforms state-of-the-art domain adaptation methods.
arXiv Detail & Related papers (2021-03-25T14:33:33Z) - Learning Invariant Representations and Risks for Semi-supervised Domain
Adaptation [109.73983088432364]
We propose the first method that aims to simultaneously learn invariant representations and risks under the setting of semi-supervised domain adaptation (Semi-DA)
We introduce the LIRR algorithm for jointly textbfLearning textbfInvariant textbfRepresentations and textbfRisks.
arXiv Detail & Related papers (2020-10-09T15:42:35Z) - Discrepancy Minimization in Domain Generalization with Generative
Nearest Neighbors [13.047289562445242]
Domain generalization (DG) deals with the problem of domain shift where a machine learning model trained on multiple-source domains fail to generalize well on a target domain with different statistics.
Multiple approaches have been proposed to solve the problem of domain generalization by learning domain invariant representations across the source domains that fail to guarantee generalization on the shifted target domain.
We propose a Generative Nearest Neighbor based Discrepancy Minimization (GNNDM) method which provides a theoretical guarantee that is upper bounded by the error in the labeling process of the target.
arXiv Detail & Related papers (2020-07-28T14:54:25Z) - Dual Distribution Alignment Network for Generalizable Person
Re-Identification [174.36157174951603]
Domain generalization (DG) serves as a promising solution to handle person Re-Identification (Re-ID)
We present a Dual Distribution Alignment Network (DDAN) which handles this challenge by selectively aligning distributions of multiple source domains.
We evaluate our DDAN on a large-scale Domain Generalization Re-ID (DG Re-ID) benchmark.
arXiv Detail & Related papers (2020-07-27T00:08:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.