論文の概要: Open-World Semantic Segmentation Including Class Similarity
- arxiv url: http://arxiv.org/abs/2403.07532v1
- Date: Tue, 12 Mar 2024 11:11:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-13 21:52:44.909968
- Title: Open-World Semantic Segmentation Including Class Similarity
- Title(参考訳): クラス類似性を含むオープンワールド意味セグメンテーション
- Authors: Matteo Sodano, Federico Magistri, Lucas Nunes, Jens Behley, Cyrill
Stachniss
- Abstract要約: 本論文は, オープンワールドのセマンティックセマンティックセグメンテーション, すなわち, トレーニング中に未確認の物体を解釈する画像データの変種に対処する。
本稿では,クローズドワールドのセマンティックセグメンテーションを正確に行う新しい手法を提案する。
- 参考スコア(独自算出の注目度): 31.799000996671975
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Interpreting camera data is key for autonomously acting systems, such as
autonomous vehicles. Vision systems that operate in real-world environments
must be able to understand their surroundings and need the ability to deal with
novel situations. This paper tackles open-world semantic segmentation, i.e.,
the variant of interpreting image data in which objects occur that have not
been seen during training. We propose a novel approach that performs accurate
closed-world semantic segmentation and, at the same time, can identify new
categories without requiring any additional training data. Our approach
additionally provides a similarity measure for every newly discovered class in
an image to a known category, which can be useful information in downstream
tasks such as planning or mapping. Through extensive experiments, we show that
our model achieves state-of-the-art results on classes known from training data
as well as for anomaly segmentation and can distinguish between different
unknown classes.
- Abstract(参考訳): カメラデータの解釈は、自動運転車のような自律走行システムの鍵となる。
現実の環境で動作する視覚システムは、周囲の状況を理解し、新しい状況に対処する能力が必要となる。
本論文は, オープンワールドのセマンティックセマンティックセグメンテーション, すなわち, トレーニング中に未確認の物体を解釈する画像データの変種に対処する。
そこで本研究では,クローズドワールド意味セグメンテーションを精度良く行うとともに,新たなカテゴリを新たなトレーニングデータなしで識別する手法を提案する。
さらに,画像中の新たに発見されたクラスと既知のカテゴリの類似度尺度も提供し,計画やマッピングといった下流タスクで有用な情報を提供する。
広範な実験を通じて,学習データから既知のクラスと異常セグメンテーションについての最新結果が得られ,未知のクラスを区別できることを示した。
関連論文リスト
- Exploiting Contextual Uncertainty of Visual Data for Efficient Training of Deep Models [0.65268245109828]
アクティブラーニングCDALにおける文脈多様性の概念を導入する。
モデルバイアスを低減するために、文脈的に公正なデータをキュレートするデータ修復アルゴリズムを提案する。
我々は、野生生物カメラトラップ画像の画像検索システムと、質の悪い農村道路に対する信頼性の高い警告システムの開発に取り組んでいる。
論文 参考訳(メタデータ) (2024-11-04T09:43:33Z) - SegPrompt: Boosting Open-world Segmentation via Category-level Prompt
Learning [49.17344010035996]
オープンワールドインスタンスセグメンテーション(OWIS)モデルは、クラスに依存しない方法で未知のオブジェクトを検出する。
以前のOWISは、未知のオブジェクトに一般化するモデルの能力を維持するために、トレーニング中のカテゴリ情報を完全に消去するアプローチだった。
そこで本研究では,モデルのクラスに依存しないセグメンテーション能力を改善するためにカテゴリ情報を利用するSegPromptと呼ばれる新しいトレーニング機構を提案する。
論文 参考訳(メタデータ) (2023-08-12T11:25:39Z) - Exploring Open-Vocabulary Semantic Segmentation without Human Labels [76.15862573035565]
我々は、既存の事前学習された視覚言語モデル(VL)を利用して意味的セグメンテーションモデルを訓練するZeroSegを提案する。
ZeroSegは、VLモデルで学んだ視覚概念をセグメントトークンの集合に蒸留することでこれを克服し、それぞれが対象画像の局所化領域を要約する。
提案手法は,他のゼロショットセグメンテーション法と比較して,同じトレーニングデータを用いた場合と比較して,最先端性能を実現する。
論文 参考訳(メタデータ) (2023-06-01T08:47:06Z) - Open-world Semantic Segmentation via Contrasting and Clustering
Vision-Language Embedding [95.78002228538841]
本研究では,様々なオープンワールドカテゴリのセマンティックオブジェクトを高密度アノテーションを使わずにセマンティックオブジェクトのセマンティックオブジェクトのセマンティック化を学習するための,新しいオープンワールドセマンティックセマンティックセマンティックセマンティクスパイプラインを提案する。
提案手法は任意のカテゴリのオブジェクトを直接分割し、3つのベンチマークデータセット上でデータラベリングを必要とするゼロショットセグメンテーション法より優れている。
論文 参考訳(メタデータ) (2022-07-18T09:20:04Z) - SATS: Self-Attention Transfer for Continual Semantic Segmentation [50.51525791240729]
連続的なセマンティックセグメンテーションは、連続的な分類学習と同じ破滅的な忘れの問題に悩まされる。
本研究では,各画像内の要素間の関係について,知識に関連する新しいタイプの情報伝達を提案する。
関係情報は、トランスフォーマースタイルのセグメンテーションモデルにおける自己アテンションマップから有効に得ることができる。
論文 参考訳(メタデータ) (2022-03-15T06:09:28Z) - Mutual Information-based Disentangled Neural Networks for Classifying
Unseen Categories in Different Domains: Application to Fetal Ultrasound
Imaging [10.504733425082335]
ディープニューラルネットワークは、異なる絡み合ったドメイン特徴とカテゴリ特徴を持つ画像間の限定的な一般化性を示す。
本稿では,MIDNet(Multual Information-based Disentangled Neural Networks)を提案する。
2つの異なる画像分類タスクのための胎児超音波データセットについて,提案手法を広範囲に評価した。
論文 参考訳(メタデータ) (2020-10-30T17:32:18Z) - Region Comparison Network for Interpretable Few-shot Image
Classification [97.97902360117368]
新しいクラスのモデルをトレーニングするために、ラベル付きサンプルの限られた数だけを効果的に活用するための画像分類が提案されている。
本研究では,領域比較ネットワーク (RCN) と呼ばれる距離学習に基づく手法を提案する。
また,タスクのレベルからカテゴリへの解釈可能性の一般化も提案する。
論文 参考訳(メタデータ) (2020-09-08T07:29:05Z) - Mining Cross-Image Semantics for Weakly Supervised Semantic Segmentation [128.03739769844736]
2つのニューラルコアテンションを分類器に組み込んで、画像間のセマンティックな類似点と相違点をキャプチャする。
オブジェクトパターン学習の強化に加えて、コアテンションは他の関連する画像からのコンテキストを活用して、ローカライズマップの推論を改善することができる。
提案アルゴリズムは,これらすべての設定に対して新たな最先端性を設定し,その有効性と一般化性を示す。
論文 参考訳(メタデータ) (2020-07-03T21:53:46Z) - Learning unbiased zero-shot semantic segmentation networks via
transductive transfer [14.55508599873219]
ゼロショットセマンティックセグメンテーションにおける予測バイアスを軽減するために, 簡単に実装可能なトランスダクティブ手法を提案する。
本手法は,全画素レベルのラベルを持つソースイメージと,未ラベルのターゲットイメージの両方をトレーニング中に利用できると仮定する。
論文 参考訳(メタデータ) (2020-07-01T14:25:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。