論文の概要: Physically Feasible Semantic Segmentation
- arxiv url: http://arxiv.org/abs/2408.14672v3
- Date: Sun, 19 Jan 2025 19:03:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-22 14:16:39.890344
- Title: Physically Feasible Semantic Segmentation
- Title(参考訳): 物理的に可能なセマンティックセマンティックセグメンテーション
- Authors: Shamik Basu, Luc Van Gool, Christos Sakaridis,
- Abstract要約: 最先端セマンティックセグメンテーションモデルは通常、データ駆動方式で最適化される。
この純粋にデータ駆動のパラダイムは、特にトレーニング中に遭遇した領域から入力画像の領域がシフトした場合、しばしば不条理なセグメンテーションにつながる。
我々の方法であるPhyFea(PhyFea)は、まず、オフラインデータ駆動方式で手元に設定したセグメンテーショントレーニングから空間クラス関係を規定する明示的な制約を抽出し、これらの制約の違反を罰する形態的かつ差別的な損失を強制する。
- 参考スコア(独自算出の注目度): 58.17907376475596
- License:
- Abstract: State-of-the-art semantic segmentation models are typically optimized in a data-driven fashion, minimizing solely per-pixel or per-segment classification objectives on their training data. This purely data-driven paradigm often leads to absurd segmentations, especially when the domain of input images is shifted from the one encountered during training. For instance, state-of-the-art models may assign the label ``road to a segment that is located above a segment that is respectively labeled as ``sky, although our knowledge of the physical world dictates that such a configuration is not feasible for images captured by forward-facing upright cameras. Our method, Physically Feasible Semantic Segmentation (PhyFea), first extracts explicit constraints that govern spatial class relations from the semantic segmentation training set at hand in an offline, data-driven fashion, and then enforces a morphological yet differentiable loss that penalizes violations of these constraints during training to promote prediction feasibility. PhyFea is a plug-and-play method and yields consistent and significant performance improvements over diverse state-of-the-art networks on which we implement it across the ADE20K, Cityscapes, and ACDC datasets. Code and models will be made publicly available.
- Abstract(参考訳): 最先端セマンティックセグメンテーションモデルは通常、データ駆動方式で最適化される。
この純粋にデータ駆動のパラダイムは、特にトレーニング中に遭遇した領域から入力画像の領域がシフトした場合、しばしば不条理なセグメンテーションにつながる。
例えば、最先端のモデルは、それぞれ ``sky" とラベル付けされたセグメントの上に位置するセグメントに ``road" というラベルを割り当てることができます。
提案手法であるPhyFea(PhyFea)は,まず,オフラインでデータ駆動型で設定したセマンティックセグメンテーショントレーニングから空間クラス関係を規定する明示的な制約を抽出し,これらの制約の違反を罰する形態的かつ差別的な損失を課し,予測可能性を促進する。
PhyFeaはプラグイン・アンド・プレイ方式で、ADE20K、Cityscapes、ACDCデータセットにまたがって実装したさまざまな最先端ネットワークに対して、一貫性があり、大幅なパフォーマンス向上を実現しています。
コードとモデルは公開されます。
関連論文リスト
- Placing Objects in Context via Inpainting for Out-of-distribution Segmentation [59.00092709848619]
コンテキスト内のオブジェクトの配置(POC)は、イメージにオブジェクトを現実的に追加するためのパイプラインである。
POCは任意の数のオブジェクトで任意のデータセットを拡張するために使用することができる。
本稿では,POC 生成データに基づく様々な異常セグメンテーションデータセットを提示し,最近の最先端の異常チューニング手法の性能向上を実証する。
論文 参考訳(メタデータ) (2024-02-26T08:32:41Z) - Scaling up Multi-domain Semantic Segmentation with Sentence Embeddings [81.09026586111811]
ゼロショット設定に適用した場合、最先端の教師付き性能を実現するセマンティックセマンティックセマンティクスへのアプローチを提案する。
これは各クラスラベルを、クラスを記述する短い段落のベクトル値の埋め込みに置き換えることによって達成される。
結果として得られた200万以上の画像の統合セマンティックセグメンテーションデータセットは、7つのベンチマークデータセット上の最先端の教師付きメソッドと同等のパフォーマンスを達成するモデルをトレーニングすることができる。
論文 参考訳(メタデータ) (2022-02-04T07:19:09Z) - DANCE: DAta-Network Co-optimization for Efficient Segmentation Model
Training and Inference [85.02494022662505]
DANCEは、効率的なセグメンテーションモデルのトレーニングと推論のための自動データネットワーク協調最適化である。
入力イメージを適応的にダウンサンプル/ドロップする自動データスライミングを統合し、画像の空間的複雑さによって導かれるトレーニング損失に対するそれに対応するコントリビューションを制御する。
実験と非難研究により、DANCEは効率的なセグメンテーションに向けて「オールウィン」を達成できることを示した。
論文 参考訳(メタデータ) (2021-07-16T04:58:58Z) - Semi-supervised Meta-learning with Disentanglement for
Domain-generalised Medical Image Segmentation [15.351113774542839]
新たなセンター(ここではドメイン)からの新しいデータにモデルを一般化することは、依然として課題である。
本稿では,絡み合いを伴う半教師付きメタラーニングフレームワークを提案する。
提案手法は,異なるセグメンテーションタスクに対して頑健であり,2つの公開ベンチマーク上での最先端の一般化性能を実現する。
論文 参考訳(メタデータ) (2021-06-24T19:50:07Z) - Self-paced and self-consistent co-training for semi-supervised image
segmentation [23.100800154116627]
注釈付きデータが不足している場合のイメージセグメンテーションに有効な手法として、ディープコトレーニングが提案されている。
本稿では, 半教師付きセグメンテーションの既存手法を, 自己完結型・自己整合型協調学習法により改良する。
論文 参考訳(メタデータ) (2020-10-31T17:41:03Z) - Towards Adaptive Semantic Segmentation by Progressive Feature Refinement [16.40758125170239]
セグメンテーションネットワークの転送可能性を高めるために,ドメイン逆学習とともに,革新的なプログレッシブな特徴改善フレームワークを提案する。
その結果、ソース・ドメイン・イメージで訓練されたセグメンテーション・モデルは、大幅な性能劣化を伴わずにターゲット・ドメインに転送できる。
論文 参考訳(メタデータ) (2020-09-30T04:17:48Z) - Improving Semantic Segmentation via Self-Training [75.07114899941095]
半教師付きアプローチ,特に自己学習パラダイムを用いて,最先端の成果を得ることができることを示す。
まず、ラベル付きデータに基づいて教師モデルを訓練し、次にラベルなしデータの大規模なセット上で擬似ラベルを生成する。
私たちの堅牢なトレーニングフレームワークは、人名と擬似ラベルを共同で消化し、Cityscapes、CamVid、KITTIデータセット上で最高のパフォーマンスを達成することができます。
論文 参考訳(メタデータ) (2020-04-30T17:09:17Z) - Phase Consistent Ecological Domain Adaptation [76.75730500201536]
意味的セグメンテーション(意味的セグメンテーション)の課題に焦点をあてる。そこでは、注釈付き合成データが多用されるが、実際のデータへのアノテートは困難である。
視覚心理学に触発された最初の基準は、2つの画像領域間の地図が位相保存であることである。
第2の基準は、照明剤や撮像センサーの特性に関わらず、その画像に現れる環境統計、またはシーン内の規則を活用することを目的としている。
論文 参考訳(メタデータ) (2020-04-10T06:58:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。