論文の概要: WannaLaugh: A Configurable Ransomware Emulator -- Learning to Mimic Malicious Storage Traces
- arxiv url: http://arxiv.org/abs/2403.07540v2
- Date: Wed, 12 Jun 2024 14:52:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-13 22:44:06.877962
- Title: WannaLaugh: A Configurable Ransomware Emulator -- Learning to Mimic Malicious Storage Traces
- Title(参考訳): WannaLaugh: 構成可能なランサムウェアエミュレータ
- Authors: Dionysios Diamantopoulos, Roman Pletka, Slavisa Sarafijanovic, A. L. Narasimha Reddy, Haris Pozidis,
- Abstract要約: ランサムウェアは恐ろしく、急速に進化するサイバーセキュリティの脅威だ。
静的シグネチャとアプリケーション動作パターンに依存した従来の検出方法は、これらの脅威の動的性質によって問題視される。
本稿では,この課題に対処するための主な貢献を3つ紹介する。
まず、ランサムウェアエミュレータを導入する。本ツールは、実際の被害やマルウェアの拡散を発生させることなく、ランサムウェア攻撃を安全に模倣するように設計されている。
次に、このエミュレータを使ってストレージI/Oトレースを作成する方法を示す。これらのトレースは機械学習モデルのトレーニングに使用される。
第3に,我々のエミュレータが既存のランサムウェアのI/O動作を模倣して安全を実現する方法を示す。
- 参考スコア(独自算出の注目度): 1.64170671989914
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Ransomware, a fearsome and rapidly evolving cybersecurity threat, continues to inflict severe consequences on individuals and organizations worldwide. Traditional detection methods, reliant on static signatures and application behavioral patterns, are challenged by the dynamic nature of these threats. This paper introduces three primary contributions to address this challenge. First, we introduce a ransomware emulator. This tool is designed to safely mimic ransomware attacks without causing actual harm or spreading malware, making it a unique solution for studying ransomware behavior. Second, we demonstrate how we use this emulator to create storage I/O traces. These traces are then utilized to train machine-learning models. Our results show that these models are effective in detecting ransomware, highlighting the practical application of our emulator in developing responsible cybersecurity tools. Third, we show how our emulator can be used to mimic the I/O behavior of existing ransomware thereby enabling safe trace collection. Both the emulator and its application represent significant steps forward in ransomware detection in the era of machine-learning-driven cybersecurity.
- Abstract(参考訳): ランサムウェアは恐怖的で急速に進化するサイバーセキュリティの脅威であり、世界中の個人や組織に深刻な影響をもたらし続けている。
静的シグネチャとアプリケーション動作パターンに依存した従来の検出方法は、これらの脅威の動的性質によって問題視される。
本稿では,この課題に対処するための主な貢献を3つ紹介する。
まず,ランサムウェアエミュレータを紹介する。
このツールは、ランサムウェア攻撃を悪用したりマルウェアを拡散させることなく安全に模倣するように設計されており、ランサムウェアの動作を研究するためのユニークな解決策となっている。
次に、このエミュレータを使ってストレージI/Oトレースを作成する方法を示す。
これらのトレースは機械学習モデルのトレーニングに使用される。
これらのモデルがランサムウェアの検出に有効であることを示し,エミュレータのサイバーセキュリティツール開発における実用的応用を強調した。
第3に,我々のエミュレータが既存のランサムウェアのI/O動作を模倣し,安全なトレース収集を可能にする方法を示す。
エミュレータとその応用は、マシンラーニング駆動型サイバーセキュリティの時代におけるランサムウェア検出において、大きな進歩を示している。
関連論文リスト
- MASKDROID: Robust Android Malware Detection with Masked Graph Representations [56.09270390096083]
マルウェアを識別する強力な識別能力を持つ強力な検出器MASKDROIDを提案する。
我々は、グラフニューラルネットワークベースのフレームワークにマスキング機構を導入し、MASKDROIDに入力グラフ全体の復元を強制する。
この戦略により、モデルは悪意のあるセマンティクスを理解し、より安定した表現を学習し、敵攻撃に対する堅牢性を高めることができる。
論文 参考訳(メタデータ) (2024-09-29T07:22:47Z) - Obfuscated Memory Malware Detection [2.0618817976970103]
我々は、人工知能と機械学習が、特定の難読化マルウェアのマルウェアによって引き起こされるサイバー攻撃を検知し、軽減するためにどのように使用できるかを示す。
従来のランダムフォレストアルゴリズムを用いて,89.07%の精度で3種類の難読化マルウェアを検出するマルチクラス分類モデルを提案する。
論文 参考訳(メタデータ) (2024-08-23T06:39:15Z) - Understanding crypter-as-a-service in a popular underground marketplace [51.328567400947435]
Cryptersは、ターゲットバイナリを変換することで、アンチウイルス(AV)アプリケーションからの検出を回避できるソフトウェアの一部です。
シークレット・アズ・ア・サービスモデルは,検出機構の高度化に対応して人気を博している。
本論文は,シークレット・アズ・ア・サービスに特化したオンライン地下市場に関する最初の研究である。
論文 参考訳(メタデータ) (2024-05-20T08:35:39Z) - Detection of ransomware attacks using federated learning based on the CNN model [3.183529890105507]
本稿では,デジタルサブステーションの破壊動作をターゲットとしたランサムウェア攻撃モデリング手法を提案する。
提案手法はランサムウェアを高い精度で検出することを示した。
論文 参考訳(メタデータ) (2024-05-01T09:57:34Z) - Ransomware threat mitigation through network traffic analysis and
machine learning techniques [0.0]
本稿では,コンピュータネットワークにおけるランサムウェアの認識と識別方法に焦点を当てる。
このアプローチは、機械学習アルゴリズムの使用と、ネットワークトラフィックのパターンの分析に依存する。
本手法の実装により,ネットワークトラフィックに基づいて,機械学習アルゴリズムが効果的にランサムウェアを特定できることが示唆された。
論文 参考訳(メタデータ) (2024-01-27T03:55:28Z) - Ransomware Detection and Classification using Machine Learning [7.573297026523597]
本研究ではXGBoostとRandom Forest(RF)アルゴリズムを用いてランサムウェア攻撃を検出し分類する。
モデルはランサムウェア攻撃のデータセットに基づいて評価され、ランサムウェアの正確な検出と分類の有効性を示す。
論文 参考訳(メタデータ) (2023-11-05T18:16:53Z) - DRSM: De-Randomized Smoothing on Malware Classifier Providing Certified
Robustness [58.23214712926585]
我々は,マルウェア検出領域の非ランダム化スムース化技術を再設計し,DRSM(De-Randomized Smoothed MalConv)を開発した。
具体的には,実行可能ファイルの局所構造を最大に保ちながら,逆数バイトの影響を確実に抑制するウィンドウアブレーション方式を提案する。
私たちは、マルウェア実行ファイルの静的検出という領域で、認証された堅牢性を提供する最初の人です。
論文 参考訳(メタデータ) (2023-03-20T17:25:22Z) - Detecting Ransomware Execution in a Timely Manner [0.0]
近年では、ランサムウェアは従来の計算資源からサイバー物理システムや産業制御にまで広がった。
仮想インスタンスがランサムウェアに感染する一連の実験を考案した。
ランサムウェア実行を識別するための変更点検出学習法を設計する。
論文 参考訳(メタデータ) (2022-01-12T11:40:59Z) - Mate! Are You Really Aware? An Explainability-Guided Testing Framework
for Robustness of Malware Detectors [49.34155921877441]
マルウェア検出装置のロバスト性を示すための説明可能性誘導型およびモデルに依存しないテストフレームワークを提案する。
次に、このフレームワークを使用して、操作されたマルウェアを検出する最先端のマルウェア検知器の能力をテストする。
我々の発見は、現在のマルウェア検知器の限界と、その改善方法に光を当てた。
論文 参考訳(メタデータ) (2021-11-19T08:02:38Z) - Being Single Has Benefits. Instance Poisoning to Deceive Malware
Classifiers [47.828297621738265]
攻撃者は、マルウェア分類器を訓練するために使用されるデータセットをターゲットとした、高度で効率的な中毒攻撃を、どのように起動できるかを示す。
マルウェア検出領域における他の中毒攻撃とは対照的に、我々の攻撃はマルウェアファミリーではなく、移植されたトリガーを含む特定のマルウェアインスタンスに焦点を当てている。
我々は、この新たに発見された深刻な脅威に対する将来の高度な防御に役立つ包括的検出手法を提案する。
論文 参考訳(メタデータ) (2020-10-30T15:27:44Z) - Adversarial EXEmples: A Survey and Experimental Evaluation of Practical
Attacks on Machine Learning for Windows Malware Detection [67.53296659361598]
EXEmplesは、比較的少ない入力バイトを摂動することで、機械学習に基づく検出をバイパスすることができる。
我々は、機械学習モデルに対する過去の攻撃を包含し、一般化するだけでなく、3つの新たな攻撃を含む統一フレームワークを開発する。
これらの攻撃はFull DOS、Extended、Shiftと呼ばれ、DOSヘッダをそれぞれ操作し、拡張し、第1セクションの内容を変更することで、敵のペイロードを注入する。
論文 参考訳(メタデータ) (2020-08-17T07:16:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。