論文の概要: Detection of ransomware attacks using federated learning based on the CNN model
- arxiv url: http://arxiv.org/abs/2405.00418v1
- Date: Wed, 1 May 2024 09:57:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-02 16:07:30.678604
- Title: Detection of ransomware attacks using federated learning based on the CNN model
- Title(参考訳): CNNモデルに基づくフェデレーション学習によるランサムウェア攻撃の検出
- Authors: Hong-Nhung Nguyen, Ha-Thanh Nguyen, Damien Lescos,
- Abstract要約: 本稿では,デジタルサブステーションの破壊動作をターゲットとしたランサムウェア攻撃モデリング手法を提案する。
提案手法はランサムウェアを高い精度で検出することを示した。
- 参考スコア(独自算出の注目度): 3.183529890105507
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Computing is still under a significant threat from ransomware, which necessitates prompt action to prevent it. Ransomware attacks can have a negative impact on how smart grids, particularly digital substations. In addition to examining a ransomware detection method using artificial intelligence (AI), this paper offers a ransomware attack modeling technique that targets the disrupted operation of a digital substation. The first, binary data is transformed into image data and fed into the convolution neural network model using federated learning. The experimental findings demonstrate that the suggested technique detects ransomware with a high accuracy rate.
- Abstract(参考訳): コンピュータは依然としてランサムウェアから重大な脅威を受けており、それを防ぐための迅速なアクションが必要である。
ランサムウェア攻撃はスマートグリッド、特にデジタルサブステーションに悪影響を及ぼす可能性がある。
本稿では,人工知能(AI)を用いたランサムウェア検出手法の検討に加えて,デジタルサブステーションの破壊動作をターゲットとしたランサムウェア攻撃モデリング手法を提案する。
まず、バイナリデータを画像データに変換し、フェデレーション学習を用いて畳み込みニューラルネットワークモデルに入力する。
実験の結果,提案手法はランサムウェアを高い精度で検出することがわかった。
関連論文リスト
- Understanding crypter-as-a-service in a popular underground marketplace [51.328567400947435]
Cryptersは、ターゲットバイナリを変換することで、アンチウイルス(AV)アプリケーションからの検出を回避できるソフトウェアの一部です。
シークレット・アズ・ア・サービスモデルは,検出機構の高度化に対応して人気を博している。
本論文は,シークレット・アズ・ア・サービスに特化したオンライン地下市場に関する最初の研究である。
論文 参考訳(メタデータ) (2024-05-20T08:35:39Z) - Ransomware threat mitigation through network traffic analysis and
machine learning techniques [0.0]
本稿では,コンピュータネットワークにおけるランサムウェアの認識と識別方法に焦点を当てる。
このアプローチは、機械学習アルゴリズムの使用と、ネットワークトラフィックのパターンの分析に依存する。
本手法の実装により,ネットワークトラフィックに基づいて,機械学習アルゴリズムが効果的にランサムウェアを特定できることが示唆された。
論文 参考訳(メタデータ) (2024-01-27T03:55:28Z) - Ransomware Detection and Classification using Machine Learning [7.573297026523597]
本研究ではXGBoostとRandom Forest(RF)アルゴリズムを用いてランサムウェア攻撃を検出し分類する。
モデルはランサムウェア攻撃のデータセットに基づいて評価され、ランサムウェアの正確な検出と分類の有効性を示す。
論文 参考訳(メタデータ) (2023-11-05T18:16:53Z) - RansomAI: AI-powered Ransomware for Stealthy Encryption [0.5172201569251684]
RansomAIは、その検出を最小限に抑える最高の暗号化アルゴリズム、レート、期間を学ぶフレームワークである。
Raspberry Pi 4に影響を及ぼすRansomware-PoCの検出を、90%の精度で数分で回避する。
論文 参考訳(メタデータ) (2023-06-27T15:36:12Z) - Untargeted Backdoor Attack against Object Detection [69.63097724439886]
我々は,タスク特性に基づいて,無目標で毒のみのバックドア攻撃を設計する。
攻撃によって、バックドアがターゲットモデルに埋め込まれると、トリガーパターンでスタンプされたオブジェクトの検出を失う可能性があることを示す。
論文 参考訳(メタデータ) (2022-11-02T17:05:45Z) - Malware and Ransomware Detection Models [0.0]
本稿では,2つの最適化モデルを組み合わせた,新しいフレキシブルランサムウェア検出モデルを提案する。
限られたデータセットにおける検出結果から,精度とF1スコアが得られた。
論文 参考訳(メタデータ) (2022-07-05T15:22:13Z) - Mate! Are You Really Aware? An Explainability-Guided Testing Framework
for Robustness of Malware Detectors [49.34155921877441]
マルウェア検出装置のロバスト性を示すための説明可能性誘導型およびモデルに依存しないテストフレームワークを提案する。
次に、このフレームワークを使用して、操作されたマルウェアを検出する最先端のマルウェア検知器の能力をテストする。
我々の発見は、現在のマルウェア検知器の限界と、その改善方法に光を当てた。
論文 参考訳(メタデータ) (2021-11-19T08:02:38Z) - Being Single Has Benefits. Instance Poisoning to Deceive Malware
Classifiers [47.828297621738265]
攻撃者は、マルウェア分類器を訓練するために使用されるデータセットをターゲットとした、高度で効率的な中毒攻撃を、どのように起動できるかを示す。
マルウェア検出領域における他の中毒攻撃とは対照的に、我々の攻撃はマルウェアファミリーではなく、移植されたトリガーを含む特定のマルウェアインスタンスに焦点を当てている。
我々は、この新たに発見された深刻な脅威に対する将来の高度な防御に役立つ包括的検出手法を提案する。
論文 参考訳(メタデータ) (2020-10-30T15:27:44Z) - Cassandra: Detecting Trojaned Networks from Adversarial Perturbations [92.43879594465422]
多くの場合、事前トレーニングされたモデルは、トロイの木馬の振る舞いをモデルに挿入するためにトレーニングパイプラインを中断したかもしれないベンダーから派生している。
本稿では,事前学習したモデルがトロイの木馬か良馬かを検証する手法を提案する。
本手法は,ニューラルネットワークの指紋を,ネットワーク勾配から学習した逆方向の摂動の形でキャプチャする。
論文 参考訳(メタデータ) (2020-07-28T19:00:40Z) - Scalable Backdoor Detection in Neural Networks [61.39635364047679]
ディープラーニングモデルは、トロイの木馬攻撃に対して脆弱で、攻撃者はトレーニング中にバックドアをインストールして、結果のモデルが小さなトリガーパッチで汚染されたサンプルを誤識別させる。
本稿では,ラベル数と計算複雑性が一致しない新たなトリガリバースエンジニアリング手法を提案する。
実験では,提案手法が純モデルからトロイの木馬モデルを分離する際の完全なスコアを達成できることが観察された。
論文 参考訳(メタデータ) (2020-06-10T04:12:53Z) - Towards a Resilient Machine Learning Classifier -- a Case Study of
Ransomware Detection [5.560986338397972]
ランサムウェア(暗号ランサムウェアと呼ばれる)を検出するために機械学習(ML)分類器が作られた
ランサムウェアとファイル内容エントロピーのインプット/アウトプットアクティビティは,暗号ランサムウェアを検出するユニークな特徴であることがわかった。
精度と弾力性に加えて、信頼性は品質検知のもう一つの重要な基準である。
論文 参考訳(メタデータ) (2020-03-13T18:02:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。