Ensembling Prioritized Hybrid Policies for Multi-agent Pathfinding
- URL: http://arxiv.org/abs/2403.07559v2
- Date: Wed, 10 Jul 2024 08:36:48 GMT
- Title: Ensembling Prioritized Hybrid Policies for Multi-agent Pathfinding
- Authors: Huijie Tang, Federico Berto, Jinkyoo Park,
- Abstract summary: Multi-Agent Reinforcement Learning (MARL) based Multi-Agent Path Finding (MAPF) has recently gained attention due to its efficiency and scalability.
Several MARL-MAPF methods choose to use communication to enrich the information one agent can perceive.
We propose a new method, Ensembling Prioritized Hybrid Policies (EPH)
- Score: 18.06081009550052
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-Agent Reinforcement Learning (MARL) based Multi-Agent Path Finding (MAPF) has recently gained attention due to its efficiency and scalability. Several MARL-MAPF methods choose to use communication to enrich the information one agent can perceive. However, existing works still struggle in structured environments with high obstacle density and a high number of agents. To further improve the performance of the communication-based MARL-MAPF solvers, we propose a new method, Ensembling Prioritized Hybrid Policies (EPH). We first propose a selective communication block to gather richer information for better agent coordination within multi-agent environments and train the model with a Q learning-based algorithm. We further introduce three advanced inference strategies aimed at bolstering performance during the execution phase. First, we hybridize the neural policy with single-agent expert guidance for navigating conflict-free zones. Secondly, we propose Q value-based methods for prioritized resolution of conflicts as well as deadlock situations. Finally, we introduce a robust ensemble method that can efficiently collect the best out of multiple possible solutions. We empirically evaluate EPH in complex multi-agent environments and demonstrate competitive performance against state-of-the-art neural methods for MAPF. We open-source our code at https://github.com/ai4co/eph-mapf.
Related papers
- Efficient Adaptation in Mixed-Motive Environments via Hierarchical Opponent Modeling and Planning [51.52387511006586]
We propose Hierarchical Opponent modeling and Planning (HOP), a novel multi-agent decision-making algorithm.
HOP is hierarchically composed of two modules: an opponent modeling module that infers others' goals and learns corresponding goal-conditioned policies.
HOP exhibits superior few-shot adaptation capabilities when interacting with various unseen agents, and excels in self-play scenarios.
arXiv Detail & Related papers (2024-06-12T08:48:06Z) - Decentralized Monte Carlo Tree Search for Partially Observable
Multi-agent Pathfinding [49.730902939565986]
Multi-Agent Pathfinding problem involves finding a set of conflict-free paths for a group of agents confined to a graph.
In this study, we focus on the decentralized MAPF setting, where the agents may observe the other agents only locally.
We propose a decentralized multi-agent Monte Carlo Tree Search (MCTS) method for MAPF tasks.
arXiv Detail & Related papers (2023-12-26T06:57:22Z) - SACHA: Soft Actor-Critic with Heuristic-Based Attention for Partially
Observable Multi-Agent Path Finding [3.4260993997836753]
We propose a novel multi-agent actor-critic method called Soft Actor-Critic with Heuristic-Based Attention (SACHA)
SACHA learns a neural network for each agent to selectively pay attention to the shortest path guidance from multiple agents within its field of view.
We demonstrate decent improvements over several state-of-the-art learning-based MAPF methods with respect to success rate and solution quality.
arXiv Detail & Related papers (2023-07-05T23:36:33Z) - Multi-Agent Path Finding with Prioritized Communication Learning [44.89255851944412]
We propose a PrIoritized COmmunication learning method (PICO), which incorporates the textitimplicit planning priorities into the communication topology.
PICO performs significantly better in large-scale MAPF tasks in success rates and collision rates than state-of-the-art learning-based planners.
arXiv Detail & Related papers (2022-02-08T04:04:19Z) - MACRPO: Multi-Agent Cooperative Recurrent Policy Optimization [17.825845543579195]
We propose a new multi-agent actor-critic method called textitMulti-Agent Cooperative Recurrent Proximal Policy Optimization (MACRPO)
We use a recurrent layer in critic's network architecture and propose a new framework to use a meta-trajectory to train the recurrent layer.
We evaluate our algorithm on three challenging multi-agent environments with continuous and discrete action spaces.
arXiv Detail & Related papers (2021-09-02T12:43:35Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
We propose an efficient model-based reinforcement learning algorithm for learning in multi-agent systems.
Our main theoretical contributions are the first general regret bounds for model-based reinforcement learning for MFC.
We provide a practical parametrization of the core optimization problem.
arXiv Detail & Related papers (2021-07-08T18:01:02Z) - Distributed Heuristic Multi-Agent Path Finding with Communication [7.854890646114447]
Multi-Agent Path Finding (MAPF) is essential to large-scale robotic systems.
Recent methods have applied reinforcement learning (RL) to learn decentralized polices in partially observable environments.
This paper combines communication with deep Q-learning to provide a novel learning based method for MAPF.
arXiv Detail & Related papers (2021-06-21T18:50:58Z) - Compilation-based Solvers for Multi-Agent Path Finding: a Survey,
Discussion, and Future Opportunities [7.766921168069532]
We show the lessons learned from past developments and current trends in the topic and discuss its wider impact.
Two major approaches to optimal MAPF solving include (1) dedicated search-based methods, which solve MAPF directly, and (2) compilation-based methods that reduce a MAPF instance to an instance in a different well established formalism.
arXiv Detail & Related papers (2021-04-23T20:13:12Z) - The Surprising Effectiveness of MAPPO in Cooperative, Multi-Agent Games [67.47961797770249]
Multi-Agent PPO (MAPPO) is a multi-agent PPO variant which adopts a centralized value function.
We show that MAPPO achieves performance comparable to the state-of-the-art in three popular multi-agent testbeds.
arXiv Detail & Related papers (2021-03-02T18:59:56Z) - F2A2: Flexible Fully-decentralized Approximate Actor-critic for
Cooperative Multi-agent Reinforcement Learning [110.35516334788687]
Decentralized multi-agent reinforcement learning algorithms are sometimes unpractical in complicated applications.
We propose a flexible fully decentralized actor-critic MARL framework, which can handle large-scale general cooperative multi-agent setting.
Our framework can achieve scalability and stability for large-scale environment and reduce information transmission.
arXiv Detail & Related papers (2020-04-17T14:56:29Z) - FACMAC: Factored Multi-Agent Centralised Policy Gradients [103.30380537282517]
We propose FACtored Multi-Agent Centralised policy gradients (FACMAC)
It is a new method for cooperative multi-agent reinforcement learning in both discrete and continuous action spaces.
We evaluate FACMAC on variants of the multi-agent particle environments, a novel multi-agent MuJoCo benchmark, and a challenging set of StarCraft II micromanagement tasks.
arXiv Detail & Related papers (2020-03-14T21:29:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.