Learning to Solve the Min-Max Mixed-Shelves Picker-Routing Problem via Hierarchical and Parallel Decoding
- URL: http://arxiv.org/abs/2502.10233v1
- Date: Fri, 14 Feb 2025 15:42:30 GMT
- Title: Learning to Solve the Min-Max Mixed-Shelves Picker-Routing Problem via Hierarchical and Parallel Decoding
- Authors: Laurin Luttmann, Lin Xie,
- Abstract summary: The Mixed-Shelves Picker Routing Problem (MSPRP) is a fundamental challenge in logistics, where pickers must navigate a mixed-shelves environment to retrieve SKUs efficiently.<n>We propose a novel hierarchical and parallel decoding approach for solving the min-max variant of the MSPRP via multi-agent reinforcement learning.<n> Experiments show state-of-the-art performance in both solution quality and inference speed, particularly for large-scale and out-of-distribution instances.
- Score: 0.3867363075280544
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Mixed-Shelves Picker Routing Problem (MSPRP) is a fundamental challenge in warehouse logistics, where pickers must navigate a mixed-shelves environment to retrieve SKUs efficiently. Traditional heuristics and optimization-based approaches struggle with scalability, while recent machine learning methods often rely on sequential decision-making, leading to high solution latency and suboptimal agent coordination. In this work, we propose a novel hierarchical and parallel decoding approach for solving the min-max variant of the MSPRP via multi-agent reinforcement learning. While our approach generates a joint distribution over agent actions, allowing for fast decoding and effective picker coordination, our method introduces a sequential action selection to avoid conflicts in the multi-dimensional action space. Experiments show state-of-the-art performance in both solution quality and inference speed, particularly for large-scale and out-of-distribution instances. Our code is publicly available at http://github.com/LTluttmann/marl4msprp.
Related papers
- Collab: Controlled Decoding using Mixture of Agents for LLM Alignment [90.6117569025754]
Reinforcement learning from human feedback has emerged as an effective technique to align Large Language models.
Controlled Decoding provides a mechanism for aligning a model at inference time without retraining.
We propose a mixture of agent-based decoding strategies leveraging the existing off-the-shelf aligned LLM policies.
arXiv Detail & Related papers (2025-03-27T17:34:25Z) - Reinforcement learning with combinatorial actions for coupled restless bandits [62.89013331120493]
We propose SEQUOIA, an RL algorithm that directly optimize for long-term reward over the feasible action space.
We empirically validate SEQUOIA on four novel restless bandit problems with constraints: multiple interventions, path constraints, bipartite matching, and capacity constraints.
arXiv Detail & Related papers (2025-03-01T21:25:21Z) - O-MAPL: Offline Multi-agent Preference Learning [5.4482836906033585]
Inferring reward functions from demonstrations is a key challenge in reinforcement learning (RL)<n>We introduce a novel end-to-end preference-based learning framework for cooperative MARL.<n>Our algorithm outperforms existing methods across various tasks.
arXiv Detail & Related papers (2025-01-31T08:08:20Z) - Parallel AutoRegressive Models for Multi-Agent Combinatorial Optimization [17.392822956504848]
We propose a reinforcement learning framework designed to construct high-quality solutions for multi-agent tasks efficiently.<n>PARCO integrates three key components: (1) transformer-based communication layers to enable effective agent collaboration during parallel solution construction, (2) a multiple pointer mechanism for low-latency, parallel agent decision-making, and (3) priority-based conflict handlers to resolve decision conflicts via learned priorities.<n>We evaluate PARCO in multi-agent vehicle routing and scheduling problems where our approach outperforms state-of-the-art learning methods and demonstrates strong generalization ability and remarkable computational efficiency.
arXiv Detail & Related papers (2024-09-05T17:49:18Z) - Design Optimization of NOMA Aided Multi-STAR-RIS for Indoor Environments: A Convex Approximation Imitated Reinforcement Learning Approach [51.63921041249406]
Non-orthogonal multiple access (NOMA) enables multiple users to share the same frequency band, and simultaneously transmitting and reflecting reconfigurable intelligent surface (STAR-RIS)
deploying STAR-RIS indoors presents challenges in interference mitigation, power consumption, and real-time configuration.
A novel network architecture utilizing multiple access points (APs), STAR-RISs, and NOMA is proposed for indoor communication.
arXiv Detail & Related papers (2024-06-19T07:17:04Z) - Ensembling Prioritized Hybrid Policies for Multi-agent Pathfinding [18.06081009550052]
Multi-Agent Reinforcement Learning (MARL) based Multi-Agent Path Finding (MAPF) has recently gained attention due to its efficiency and scalability.
Several MARL-MAPF methods choose to use communication to enrich the information one agent can perceive.
We propose a new method, Ensembling Prioritized Hybrid Policies (EPH)
arXiv Detail & Related papers (2024-03-12T11:47:12Z) - Expeditious Saliency-guided Mix-up through Random Gradient Thresholding [89.59134648542042]
Mix-up training approaches have proven to be effective in improving the generalization ability of Deep Neural Networks.
In this paper, inspired by the superior qualities of each direction over one another, we introduce a novel method that lies at the junction of the two routes.
We name our method R-Mix following the concept of "Random Mix-up"
In order to address the question of whether there exists a better decision protocol, we train a Reinforcement Learning agent that decides the mix-up policies.
arXiv Detail & Related papers (2022-12-09T14:29:57Z) - Multi-agent Deep Covering Skill Discovery [50.812414209206054]
We propose Multi-agent Deep Covering Option Discovery, which constructs the multi-agent options through minimizing the expected cover time of the multiple agents' joint state space.
Also, we propose a novel framework to adopt the multi-agent options in the MARL process.
We show that the proposed algorithm can effectively capture the agent interactions with the attention mechanism, successfully identify multi-agent options, and significantly outperforms prior works using single-agent options or no options.
arXiv Detail & Related papers (2022-10-07T00:40:59Z) - Decentralised Approach for Multi Agent Path Finding [6.599344783327053]
Multi Agent Path Finding (MAPF) requires identification of conflict free paths for spatially-extended agents.
These find application in real world problems like Convoy Movement Problem, Train Scheduling etc.
Our proposed approach, Decentralised Multi Agent Path Finding (DeMAPF), handles MAPF as a sequence of pathplanning and allocation problems.
arXiv Detail & Related papers (2021-06-03T18:07:26Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z) - Dynamic Multi-Robot Task Allocation under Uncertainty and Temporal
Constraints [52.58352707495122]
We present a multi-robot allocation algorithm that decouples the key computational challenges of sequential decision-making under uncertainty and multi-agent coordination.
We validate our results over a wide range of simulations on two distinct domains: multi-arm conveyor belt pick-and-place and multi-drone delivery dispatch in a city.
arXiv Detail & Related papers (2020-05-27T01:10:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.