論文の概要: Communication Optimization for Distributed Training: Architecture, Advances, and Opportunities
- arxiv url: http://arxiv.org/abs/2403.07585v2
- Date: Thu, 29 Aug 2024 02:37:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-30 19:18:41.391217
- Title: Communication Optimization for Distributed Training: Architecture, Advances, and Opportunities
- Title(参考訳): 分散トレーニングのためのコミュニケーション最適化:アーキテクチャ、進歩、機会
- Authors: Yunze Wei, Tianshuo Hu, Cong Liang, Yong Cui,
- Abstract要約: 分散ディープニューラルネットワークトレーニングの一般的なアーキテクチャを導入し、並列化戦略、集合通信ライブラリ、ネットワーク間の関係を分析する。
現在の3層パラダイムのレイヤは比較的独立しており、分散トレーニングシナリオにおいて、層間協調最適化のためのリッチな設計スペースがあることに気付きました。
- 参考スコア(独自算出の注目度): 4.444597313251626
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The past few years have witnessed the flourishing of large-scale deep neural network models with ever-growing parameter numbers. Training such large-scale models typically requires massive memory and computing resources, necessitating distributed training. As GPU performance has rapidly evolved in recent years, computation time has shrunk, making communication a larger portion of the overall training time. Consequently, optimizing communication for distributed training has become crucial. In this article, we briefly introduce the general architecture of distributed deep neural network training and analyze relationships among Parallelization Strategy, Collective Communication Library, and Network from the perspective of communication optimization, which forms a three-layer paradigm. We then review current representative research advances within this three-layer paradigm. We find that layers in the current three-layer paradigm are relatively independent and there is a rich design space for cross-layer collaborative optimization in distributed training scenarios. Therefore, we advocate "Vertical" and "Horizontal" co-designs which extend the three-layer paradigm to a five-layer paradigm. We also advocate "Intra-Inter" and "Host-Net" co-designs to further utilize the potential of heterogeneous resources. We hope this article can shed some light on future research on communication optimization for distributed training.
- Abstract(参考訳): 過去数年間、パラメータ数が絶え間なく増加する大規模ディープニューラルネットワークモデルの繁栄を目撃してきた。
このような大規模モデルのトレーニングは、通常、大量のメモリとコンピューティングリソースを必要とし、分散トレーニングを必要とする。
近年、GPUの性能が急速に向上するにつれて、計算時間が減少し、コミュニケーションが全体的なトレーニング時間の大部分を占めるようになった。
その結果,分散トレーニングにおけるコミュニケーションの最適化が重要になった。
本稿では,分散ディープニューラルネットワークトレーニングの一般的なアーキテクチャについて紹介し,通信最適化の観点から並列化戦略,集合通信ライブラリ,ネットワーク間の関係を解析する。
次に、この3層パラダイムにおける現在の代表的な研究動向について概観する。
現在の3層パラダイムのレイヤは比較的独立しており、分散トレーニングシナリオにおいて、層間協調最適化のためのリッチな設計スペースがあることに気付きました。
そこで我々は3層パラダイムを5層パラダイムに拡張する"垂直"と"水平"の共設計を提唱する。
また、異種資源の可能性をさらに活用するために、"Intra-Inter"と"Host-Net"の共同設計も提唱する。
この記事では、分散トレーニングのためのコミュニケーション最適化に関する今後の研究について、いくつか光を当てておきたい。
関連論文リスト
- From promise to practice: realizing high-performance decentralized training [8.955918346078935]
ディープニューラルネットワークの分散トレーニングは、All-Reduceのような同期データ並列メソッドよりも理論的に優れたスケーラビリティのために大きな注目を集めている。
本稿では、All-Reduceトレーニングのスピードアップにつながる3つの重要な要因を特定し、いつ、どのように、どの程度の分散化によって、より短い実行時間が得られるかを決定するランタイムモデルを構築する。
論文 参考訳(メタデータ) (2024-10-15T19:04:56Z) - Communication-Efficient Large-Scale Distributed Deep Learning: A Comprehensive Survey [43.57122822150023]
本稿では,大規模分散ディープラーニングにおける効率的なコミュニケーションの実現を目的とした,アルゴリズムと技術に関する文献調査を行う。
まず,大規模分散学習の文脈において,モデル同期と通信データ圧縮のための効率的なアルゴリズムを導入する。
次に、分散トレーニングおよび推論におけるリソース割り当てとタスクスケジューリングに関する効率的な戦略を導入する。
論文 参考訳(メタデータ) (2024-04-09T08:35:04Z) - Partitioned Neural Network Training via Synthetic Intermediate Labels [0.0]
GPUメモリの制約は、そのような巨大なモデルをトレーニングする上で、注目すべきボトルネックになっている。
この研究は、モデルをGPU間で分割し、個々のセグメントをトレーニングするために合成中間ラベルを生成することを提唱する。
このアプローチは、モデル精度を維持しながらデータ通信を最小限に抑える、より効率的なトレーニングプロセスをもたらす。
論文 参考訳(メタデータ) (2024-03-17T13:06:29Z) - Towards a Better Theoretical Understanding of Independent Subnetwork Training [56.24689348875711]
独立サブネットワークトレーニング(IST)の理論的考察
ISTは、上記の問題を解決するための、最近提案され、非常に効果的である。
圧縮通信を用いた分散手法など,ISTと代替手法の基本的な違いを同定する。
論文 参考訳(メタデータ) (2023-06-28T18:14:22Z) - Partitioning Distributed Compute Jobs with Reinforcement Learning and
Graph Neural Networks [58.720142291102135]
大規模な機械学習モデルは、幅広い分野に進歩をもたらしている。
これらのモデルの多くは、単一のマシンでトレーニングするには大きすぎるため、複数のデバイスに分散する必要がある。
スループットやブロッキングレートといったユーザクリティカルな指標に対して,並列化の最大化が準最適であることを示す。
論文 参考訳(メタデータ) (2023-01-31T17:41:07Z) - On Optimizing the Communication of Model Parallelism [74.15423270435949]
大規模モデル並列ディープラーニング(DL)における新しい重要なコミュニケーションパターンについて検討する。
クロスメッシュリシャーディングでは、シャードテンソルをソースデバイスメッシュから宛先デバイスメッシュに送信する必要がある。
本稿では、効率的な放送ベースの通信システムと「重複しやすい」パイプラインスケジュールという、クロスメシュ・リシャーディングに対処するための2つのコントリビューションを提案する。
論文 参考訳(メタデータ) (2022-11-10T03:56:48Z) - Decentralized Training of Foundation Models in Heterogeneous
Environments [77.47261769795992]
GPT-3 や PaLM のようなトレーニング基盤モデルは、非常に高価である。
ヘテロジニアスネットワーク上での分散型システムにおけるモデル並列化を用いた大規模基盤モデルのトレーニングに関する最初の研究について述べる。
論文 参考訳(メタデータ) (2022-06-02T20:19:51Z) - Simultaneous Training of Partially Masked Neural Networks [67.19481956584465]
トレーニングされたフルネットワークから事前定義された'コア'サブネットワークを分割して,優れたパフォーマンスでニューラルネットワークをトレーニングすることが可能であることを示す。
低ランクコアを用いたトランスフォーマーのトレーニングは,低ランクモデル単独のトレーニングよりも優れた性能を有する低ランクモデルが得られることを示す。
論文 参考訳(メタデータ) (2021-06-16T15:57:51Z) - The Case for Strong Scaling in Deep Learning: Training Large 3D CNNs
with Hybrid Parallelism [3.4377970608678314]
大規模3次元畳み込みニューラルネットワークを学習するためのスケーラブルなハイブリッド並列アルゴリズムを提案する。
提案したトレーニングアルゴリズムを,CosmoFlowと3D U-Netの2つの挑戦的な3D CNNを用いて評価した。
論文 参考訳(メタデータ) (2020-07-25T05:06:06Z) - Large-Scale Gradient-Free Deep Learning with Recursive Local
Representation Alignment [84.57874289554839]
大規模データセット上でディープニューラルネットワークをトレーニングするには、重要なハードウェアリソースが必要である。
これらのネットワークをトレーニングするためのワークホースであるバックプロパゲーションは、本質的に並列化が難しいシーケンシャルなプロセスである。
本稿では、深層ネットワークのトレーニングに使用できるバックプロップに代わる、神経生物学的に有望な代替手段を提案する。
論文 参考訳(メタデータ) (2020-02-10T16:20:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。