論文の概要: Decomposing Disease Descriptions for Enhanced Pathology Detection: A Multi-Aspect Vision-Language Pre-training Framework
- arxiv url: http://arxiv.org/abs/2403.07636v4
- Date: Sun, 31 Mar 2024 07:42:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-02 13:54:43.837267
- Title: Decomposing Disease Descriptions for Enhanced Pathology Detection: A Multi-Aspect Vision-Language Pre-training Framework
- Title(参考訳): 病態検出のための病状記述の分解:多視点視覚言語事前学習フレームワーク
- Authors: Vu Minh Hieu Phan, Yutong Xie, Yuankai Qi, Lingqiao Liu, Liyang Liu, Bowen Zhang, Zhibin Liao, Qi Wu, Minh-Son To, Johan W. Verjans,
- Abstract要約: 医学的な視覚言語事前訓練は研究の最前線として現れ、ゼロショットの病理診断を可能にしている。
バイオメディカルテキストの複雑なセマンティクスのため、現在の方法では、医学的画像と、非構造化レポートの重要な病理学的所見の整合に苦慮している。
これは、大きな言語モデルと医療専門家に相談することで達成される。
我々の研究は、近年の手法の精度を最大8.56%まで改善し、17.26%を目に見えるカテゴリーで改善した。
- 参考スコア(独自算出の注目度): 43.453943987647015
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Medical vision language pre-training (VLP) has emerged as a frontier of research, enabling zero-shot pathological recognition by comparing the query image with the textual descriptions for each disease. Due to the complex semantics of biomedical texts, current methods struggle to align medical images with key pathological findings in unstructured reports. This leads to the misalignment with the target disease's textual representation. In this paper, we introduce a novel VLP framework designed to dissect disease descriptions into their fundamental aspects, leveraging prior knowledge about the visual manifestations of pathologies. This is achieved by consulting a large language model and medical experts. Integrating a Transformer module, our approach aligns an input image with the diverse elements of a disease, generating aspect-centric image representations. By consolidating the matches from each aspect, we improve the compatibility between an image and its associated disease. Additionally, capitalizing on the aspect-oriented representations, we present a dual-head Transformer tailored to process known and unknown diseases, optimizing the comprehensive detection efficacy. Conducting experiments on seven downstream datasets, ours improves the accuracy of recent methods by up to 8.56% and 17.26% for seen and unseen categories, respectively. Our code is released at https://github.com/HieuPhan33/MAVL.
- Abstract(参考訳): 医学的視覚言語事前訓練(VLP)は研究の最前線として現れており、問合せ画像と各疾患のテキスト記述を比較することで、ゼロショットの病理診断を可能にしている。
バイオメディカルテキストの複雑なセマンティクスのため、現在の方法では、医学的画像と、非構造化レポートの重要な病理学的所見の整合に苦慮している。
これにより、対象の疾患のテキスト表現と不一致が生じる。
本稿では,病態の視覚的発現に関する事前知識を活用し,疾患記述をその基本的側面に分解する新しいVLPフレームワークを提案する。
これは、大きな言語モデルと医療専門家に相談することで達成される。
Transformerモジュールを統合することで、入力画像と病気の多様な要素を整合させ、アスペクト中心の画像表現を生成する。
各側面からマッチングを統合することにより、画像とその関連疾患の適合性を改善する。
さらに、アスペクト指向の表現に乗じて、既知の疾患や未知の疾患を処理し、包括的検出の有効性を最適化したデュアルヘッドトランスフォーマーを提案する。
下流の7つのデータセットで実験を行うことで、最新の手法の精度を最大8.56%改善し、17.26%を目に見えないカテゴリで改善した。
私たちのコードはhttps://github.com/HieuPhan33/MAVLで公開されています。
関連論文リスト
- Knowledge-enhanced Visual-Language Pretraining for Computational Pathology [68.6831438330526]
本稿では,公共資源から収集した大規模画像テキストペアを利用した視覚的表現学習の課題について考察する。
ヒト32組織から病理診断を必要とする4,718の疾患に対して50,470個の情報属性からなる病理知識ツリーをキュレートする。
論文 参考訳(メタデータ) (2024-04-15T17:11:25Z) - Hierarchical Text-to-Vision Self Supervised Alignment for Improved Histopathology Representation Learning [64.1316997189396]
病理組織像のための新しい言語型自己教師学習フレームワーク,階層型言語型自己監督(HLSS)を提案する。
その結果,OpenSRH と TCGA の2つの医用画像ベンチマークにおいて,最先端の性能が得られた。
論文 参考訳(メタデータ) (2024-03-21T17:58:56Z) - Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images [68.42215385041114]
本稿では,CLIPモデルを用いた医用異常検出のための軽量な多レベル適応と比較フレームワークを提案する。
提案手法では,複数の残像アダプタを事前学習した視覚エンコーダに統合し,視覚的特徴の段階的向上を実現する。
医学的異常検出ベンチマーク実験により,本手法が現在の最先端モデルを大幅に上回っていることが示された。
論文 参考訳(メタデータ) (2024-03-19T09:28:19Z) - MLIP: Enhancing Medical Visual Representation with Divergence Encoder
and Knowledge-guided Contrastive Learning [48.97640824497327]
本稿では、画像テキストのコントラスト学習を通じて、言語情報を視覚領域に統合するための案内信号として、ドメイン固有の医療知識を活用する新しいフレームワークを提案する。
我々のモデルには、設計した分散エンコーダによるグローバルコントラスト学習、局所トークン・知識・パッチアライメントコントラスト学習、知識誘導型カテゴリレベルのコントラスト学習、エキスパートナレッジによるコントラスト学習が含まれる。
特に、MLIPは、限られた注釈付きデータであっても最先端の手法を超越し、医療表現学習の進歩におけるマルチモーダル事前学習の可能性を強調している。
論文 参考訳(メタデータ) (2024-02-03T05:48:50Z) - Text-guided Foundation Model Adaptation for Pathological Image
Classification [40.45252665455015]
本稿では、画像とテキストの埋め込み(CITE)を結合して、病理画像分類を強化することを提案する。
CITEは、幅広いバイオメディカルテキストで事前訓練された言語モデルから得られたテキスト洞察を注入し、病理画像理解に基礎モデルを適用する。
論文 参考訳(メタデータ) (2023-07-27T14:44:56Z) - Towards a Visual-Language Foundation Model for Computational Pathology [5.72536252929528]
病理組織学(CONCH)におけるコントラスト学習について紹介する。
CONCHは、様々な組織像、生医学的テキスト、タスクに依存しない事前トレーニングのソースを用いて開発された視覚言語基盤モデルである。
13種類の多様なベンチマークで評価され, 画像分類, セグメンテーション, キャプション, テキスト・ツー・イメージ検索, 画像・テキスト検索における最先端のパフォーマンスを達成している。
論文 参考訳(メタデータ) (2023-07-24T16:13:43Z) - Learning to Exploit Temporal Structure for Biomedical Vision-Language
Processing [53.89917396428747]
視覚言語処理における自己教師あり学習は、画像とテキストのモダリティのセマンティックアライメントを利用する。
トレーニングと微調整の両方で利用できる場合、事前のイメージとレポートを明示的に説明します。
我々のアプローチはBioViL-Tと呼ばれ、テキストモデルと共同で訓練されたCNN-Transformerハイブリッドマルチイメージエンコーダを使用する。
論文 参考訳(メタデータ) (2023-01-11T16:35:33Z) - NEEDED: Introducing Hierarchical Transformer to Eye Diseases Diagnosis [5.608716029921948]
本報告では,眼科領域における眼科領域の自動診断フレームワークNEEDEDについて述べる。
情報密度と品質を改善するために前処理モジュールを統合する。
診断部では,病原性情報を取得することにより,追跡可能な診断を可能にする注意ベースの予測器を提案する。
論文 参考訳(メタデータ) (2022-12-27T08:37:57Z) - Multi-Granularity Cross-modal Alignment for Generalized Medical Visual
Representation Learning [24.215619918283462]
本報告では, 医用画像の表現を直接学習するための新しい枠組みについて述べる。
本フレームワークは,医用画像と放射線学レポートの自然に現れる意味的対応を3段階に分けて活用する。
論文 参考訳(メタデータ) (2022-10-12T09:31:39Z) - Cross Chest Graph for Disease Diagnosis with Structural Relational
Reasoning [2.7148274921314615]
X線画像のコンピュータ診断において位置病変は重要である。
一般に弱教師付き手法はX線像の特性を考慮できなかった。
自動病変検出の性能を向上させるCross-chest Graph (CCG)を提案する。
論文 参考訳(メタデータ) (2021-01-22T08:24:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。