Fast and Simple Explainability for Point Cloud Networks
- URL: http://arxiv.org/abs/2403.07706v2
- Date: Fri, 15 Mar 2024 15:46:31 GMT
- Title: Fast and Simple Explainability for Point Cloud Networks
- Authors: Meir Yossef Levi, Guy Gilboa,
- Abstract summary: We propose a fast and simple explainable AI (XAI) method for point cloud data.
It computes pointwise importance with respect to a trained network downstream task.
- Score: 4.013156524547072
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a fast and simple explainable AI (XAI) method for point cloud data. It computes pointwise importance with respect to a trained network downstream task. This allows better understanding of the network properties, which is imperative for safety-critical applications. In addition to debugging and visualization, our low computational complexity facilitates online feedback to the network at inference. This can be used to reduce uncertainty and to increase robustness. In this work, we introduce \emph{Feature Based Interpretability} (FBI), where we compute the features' norm, per point, before the bottleneck. We analyze the use of gradients and post- and pre-bottleneck strategies, showing pre-bottleneck is preferred, in terms of smoothness and ranking. We obtain at least three orders of magnitude speedup, compared to current XAI methods, thus, scalable for big point clouds or large-scale architectures. Our approach achieves SOTA results, in terms of classification explainability. We demonstrate how the proposed measure is helpful in analyzing and characterizing various aspects of 3D learning, such as rotation invariance, robustness to out-of-distribution (OOD) outliers or domain shift and dataset bias.
Related papers
- Inferring Neural Signed Distance Functions by Overfitting on Single Noisy Point Clouds through Finetuning Data-Driven based Priors [53.6277160912059]
We propose a method to promote pros of data-driven based and overfitting-based methods for better generalization, faster inference, and higher accuracy in learning neural SDFs.
We introduce a novel statistical reasoning algorithm in local regions which is able to finetune data-driven based priors without signed distance supervision, clean point cloud, or point normals.
arXiv Detail & Related papers (2024-10-25T16:48:44Z) - Neural Network Pruning by Gradient Descent [7.427858344638741]
We introduce a novel and straightforward neural network pruning framework that incorporates the Gumbel-Softmax technique.
We demonstrate its exceptional compression capability, maintaining high accuracy on the MNIST dataset with only 0.15% of the original network parameters.
We believe our method opens a promising new avenue for deep learning pruning and the creation of interpretable machine learning systems.
arXiv Detail & Related papers (2023-11-21T11:12:03Z) - Clustering based Point Cloud Representation Learning for 3D Analysis [80.88995099442374]
We propose a clustering based supervised learning scheme for point cloud analysis.
Unlike current de-facto, scene-wise training paradigm, our algorithm conducts within-class clustering on the point embedding space.
Our algorithm shows notable improvements on famous point cloud segmentation datasets.
arXiv Detail & Related papers (2023-07-27T03:42:12Z) - GPr-Net: Geometric Prototypical Network for Point Cloud Few-Shot
Learning [2.4366811507669115]
GPr-Net is a lightweight and computationally efficient geometric network that captures the prototypical topology of point clouds.
We show that GPr-Net outperforms state-of-the-art methods in few-shot learning on point clouds.
arXiv Detail & Related papers (2023-04-12T17:32:18Z) - SVNet: Where SO(3) Equivariance Meets Binarization on Point Cloud
Representation [65.4396959244269]
The paper tackles the challenge by designing a general framework to construct 3D learning architectures.
The proposed approach can be applied to general backbones like PointNet and DGCNN.
Experiments on ModelNet40, ShapeNet, and the real-world dataset ScanObjectNN, demonstrated that the method achieves a great trade-off between efficiency, rotation, and accuracy.
arXiv Detail & Related papers (2022-09-13T12:12:19Z) - PointAttN: You Only Need Attention for Point Cloud Completion [89.88766317412052]
Point cloud completion refers to completing 3D shapes from partial 3D point clouds.
We propose a novel neural network for processing point cloud in a per-point manner to eliminate kNNs.
The proposed framework, namely PointAttN, is simple, neat and effective, which can precisely capture the structural information of 3D shapes.
arXiv Detail & Related papers (2022-03-16T09:20:01Z) - Revisiting Point Cloud Simplification: A Learnable Feature Preserving
Approach [57.67932970472768]
Mesh and Point Cloud simplification methods aim to reduce the complexity of 3D models while retaining visual quality and relevant salient features.
We propose a fast point cloud simplification method by learning to sample salient points.
The proposed method relies on a graph neural network architecture trained to select an arbitrary, user-defined, number of points from the input space and to re-arrange their positions so as to minimize the visual perception error.
arXiv Detail & Related papers (2021-09-30T10:23:55Z) - UPDesc: Unsupervised Point Descriptor Learning for Robust Registration [54.95201961399334]
UPDesc is an unsupervised method to learn point descriptors for robust point cloud registration.
We show that our learned descriptors yield superior performance over existing unsupervised methods.
arXiv Detail & Related papers (2021-08-05T17:11:08Z) - Learning Rotation-Invariant Representations of Point Clouds Using
Aligned Edge Convolutional Neural Networks [29.3830445533532]
Point cloud analysis is an area of increasing interest due to the development of 3D sensors that are able to rapidly measure the depth of scenes accurately.
Applying deep learning techniques to perform point cloud analysis is non-trivial due to the inability of these methods to generalize to unseen rotations.
To address this limitation, one usually has to augment the training data, which can lead to extra computation and require larger model complexity.
This paper proposes a new neural network called the Aligned Edge Convolutional Neural Network (AECNN) that learns a feature representation of point clouds relative to Local Reference Frames (LRFs)
arXiv Detail & Related papers (2021-01-02T17:36:00Z) - StickyPillars: Robust and Efficient Feature Matching on Point Clouds
using Graph Neural Networks [16.940377259203284]
StickyPillars is a fast, accurate and extremely robust deep middle-end 3D feature matching method on point clouds.
We present state-of-art art accuracy results on the registration problem demonstrated on the KITTI dataset.
We integrate our matching system into a LiDAR odometry pipeline yielding most accurate results on the KITTI dataset.
arXiv Detail & Related papers (2020-02-10T17:53:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.