Neural Network Pruning by Gradient Descent
- URL: http://arxiv.org/abs/2311.12526v2
- Date: Wed, 22 Nov 2023 09:39:02 GMT
- Title: Neural Network Pruning by Gradient Descent
- Authors: Zhang Zhang, Ruyi Tao, Jiang Zhang
- Abstract summary: We introduce a novel and straightforward neural network pruning framework that incorporates the Gumbel-Softmax technique.
We demonstrate its exceptional compression capability, maintaining high accuracy on the MNIST dataset with only 0.15% of the original network parameters.
We believe our method opens a promising new avenue for deep learning pruning and the creation of interpretable machine learning systems.
- Score: 7.427858344638741
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid increase in the parameters of deep learning models has led to
significant costs, challenging computational efficiency and model
interpretability. In this paper, we introduce a novel and straightforward
neural network pruning framework that incorporates the Gumbel-Softmax
technique. This framework enables the simultaneous optimization of a network's
weights and topology in an end-to-end process using stochastic gradient
descent. Empirical results demonstrate its exceptional compression capability,
maintaining high accuracy on the MNIST dataset with only 0.15\% of the original
network parameters. Moreover, our framework enhances neural network
interpretability, not only by allowing easy extraction of feature importance
directly from the pruned network but also by enabling visualization of feature
symmetry and the pathways of information propagation from features to outcomes.
Although the pruning strategy is learned through deep learning, it is
surprisingly intuitive and understandable, focusing on selecting key
representative features and exploiting data patterns to achieve extreme sparse
pruning. We believe our method opens a promising new avenue for deep learning
pruning and the creation of interpretable machine learning systems.
Related papers
- Deep Learning Through A Telescoping Lens: A Simple Model Provides Empirical Insights On Grokking, Gradient Boosting & Beyond [61.18736646013446]
In pursuit of a deeper understanding of its surprising behaviors, we investigate the utility of a simple yet accurate model of a trained neural network.
Across three case studies, we illustrate how it can be applied to derive new empirical insights on a diverse range of prominent phenomena.
arXiv Detail & Related papers (2024-10-31T22:54:34Z) - Robust Neural Pruning with Gradient Sampling Optimization for Residual Neural Networks [0.0]
This research embarks on pioneering the integration of gradient sampling optimization techniques, particularly StochGradAdam, into the pruning process of neural networks.
Our main objective is to address the significant challenge of maintaining accuracy in pruned neural models, critical in resource-constrained scenarios.
arXiv Detail & Related papers (2023-12-26T12:19:22Z) - Visual Prompting Upgrades Neural Network Sparsification: A Data-Model Perspective [64.04617968947697]
We introduce a novel data-model co-design perspective: to promote superior weight sparsity.
Specifically, customized Visual Prompts are mounted to upgrade neural Network sparsification in our proposed VPNs framework.
arXiv Detail & Related papers (2023-12-03T13:50:24Z) - Sensitivity-Aware Mixed-Precision Quantization and Width Optimization of Deep Neural Networks Through Cluster-Based Tree-Structured Parzen Estimation [4.748931281307333]
We introduce an innovative search mechanism for automatically selecting the best bit-width and layer-width for individual neural network layers.
This leads to a marked enhancement in deep neural network efficiency.
arXiv Detail & Related papers (2023-08-12T00:16:51Z) - Learning to Learn with Generative Models of Neural Network Checkpoints [71.06722933442956]
We construct a dataset of neural network checkpoints and train a generative model on the parameters.
We find that our approach successfully generates parameters for a wide range of loss prompts.
We apply our method to different neural network architectures and tasks in supervised and reinforcement learning.
arXiv Detail & Related papers (2022-09-26T17:59:58Z) - Inducing Gaussian Process Networks [80.40892394020797]
We propose inducing Gaussian process networks (IGN), a simple framework for simultaneously learning the feature space as well as the inducing points.
The inducing points, in particular, are learned directly in the feature space, enabling a seamless representation of complex structured domains.
We report on experimental results for real-world data sets showing that IGNs provide significant advances over state-of-the-art methods.
arXiv Detail & Related papers (2022-04-21T05:27:09Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Optimization-Based Separations for Neural Networks [57.875347246373956]
We show that gradient descent can efficiently learn ball indicator functions using a depth 2 neural network with two layers of sigmoidal activations.
This is the first optimization-based separation result where the approximation benefits of the stronger architecture provably manifest in practice.
arXiv Detail & Related papers (2021-12-04T18:07:47Z) - Analytically Tractable Inference in Deep Neural Networks [0.0]
Tractable Approximate Inference (TAGI) algorithm was shown to be a viable and scalable alternative to backpropagation for shallow fully-connected neural networks.
We are demonstrating how TAGI matches or exceeds the performance of backpropagation, for training classic deep neural network architectures.
arXiv Detail & Related papers (2021-03-09T14:51:34Z) - Differentiable Sparsification for Deep Neural Networks [0.0]
We propose a fully differentiable sparsification method for deep neural networks.
The proposed method can learn both the sparsified structure and weights of a network in an end-to-end manner.
To the best of our knowledge, this is the first fully differentiable sparsification method.
arXiv Detail & Related papers (2019-10-08T03:57:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.