論文の概要: Exploring Safety Generalization Challenges of Large Language Models via
Code
- arxiv url: http://arxiv.org/abs/2403.07865v1
- Date: Tue, 12 Mar 2024 17:55:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-13 19:49:23.447078
- Title: Exploring Safety Generalization Challenges of Large Language Models via
Code
- Title(参考訳): コードによる大規模言語モデルの安全性向上への挑戦
- Authors: Qibing Ren, Chang Gao, Jing Shao, Junchi Yan, Xin Tan, Wai Lam,
Lizhuang Ma
- Abstract要約: 本稿では,自然言語入力をコード入力に変換するフレームワークであるCodeAttackを紹介する。
調査によると、CodeAttackは全モデルの80%以上の安全ガードレールを一貫してバイパスしている。
CodeAttackと自然言語の間の配布ギャップが大きくなると、安全性の一般化が弱まる。
- 参考スコア(独自算出の注目度): 123.0548522996499
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid advancement of Large Language Models (LLMs) has brought about
remarkable capabilities in natural language processing but also raised concerns
about their potential misuse. While strategies like supervised fine-tuning and
reinforcement learning from human feedback have enhanced their safety, these
methods primarily focus on natural languages, which may not generalize to other
domains. This paper introduces CodeAttack, a framework that transforms natural
language inputs into code inputs, presenting a novel environment for testing
the safety generalization of LLMs. Our comprehensive studies on
state-of-the-art LLMs including GPT-4, Claude-2, and Llama-2 series reveal a
common safety vulnerability of these models against code input: CodeAttack
consistently bypasses the safety guardrails of all models more than 80\% of the
time. Furthermore, we find that a larger distribution gap between CodeAttack
and natural language leads to weaker safety generalization, such as encoding
natural language input with data structures or using less popular programming
languages. These findings highlight new safety risks in the code domain and the
need for more robust safety alignment algorithms to match the code capabilities
of LLMs.
- Abstract(参考訳): 大規模言語モデル(LLM)の急速な進歩は、自然言語処理において顕著な能力をもたらしたが、その潜在的な誤用に対する懸念も持ち上がった。
人間のフィードバックによる微調整や強化学習を監督する戦略は安全性を高めてきたが、これらの手法は自然言語に重点を置いている。
本稿では,自然言語入力をコード入力に変換するフレームワークであるCodeAttackを紹介する。
GPT-4、Claude-2、Llama-2シリーズを含む最先端のLLMに関する包括的な研究は、これらのモデルのコード入力に対する一般的な安全性の脆弱性を明らかにしている。
さらに,コードアタックと自然言語の間の分散ギャップが大きくなると,自然言語入力をデータ構造でエンコードしたり,あまり普及しないプログラミング言語を使用することなど,安全性の一般化が弱まることが判明した。
これらの結果は、コードドメインにおける新たな安全性リスクと、LLMのコード機能に合わせたより堅牢な安全性アライメントアルゴリズムの必要性を強調している。
関連論文リスト
- Jailbreaking Large Language Models with Symbolic Mathematics [6.31180501514722]
AI安全性の最近の進歩は、安全でないコンテンツ生成を緩和するために、大規模な言語モデル(LLM)のトレーニングと再チームの強化につながっている。
本稿では, シンボル数学におけるLLMの高度な能力を利用して, 安全機構を回避した新しいジェイルブレイク手法であるMathPromptを紹介する。
論文 参考訳(メタデータ) (2024-09-17T03:39:45Z) - HexaCoder: Secure Code Generation via Oracle-Guided Synthetic Training Data [60.75578581719921]
大規模言語モデル(LLM)は、自動コード生成に大きな可能性を示している。
最近の研究は、多くのLLM生成コードが深刻なセキュリティ脆弱性を含んでいることを強調している。
我々は,LLMがセキュアなコードを生成する能力を高めるための新しいアプローチであるHexaCoderを紹介する。
論文 参考訳(メタデータ) (2024-09-10T12:01:43Z) - An Exploratory Study on Fine-Tuning Large Language Models for Secure Code Generation [17.69409515806874]
脆弱性修正コミットのデータセット上での微調整済みのLLMがセキュアなコード生成を促進するかどうかを探索研究する。
オープンソースのリポジトリから、確認済みの脆弱性のコード修正を収集することで、セキュアなコード生成のための微調整データセットをクロールしました。
我々の調査によると、微調整のLLMは、C言語で6.4%、C++言語で5.4%、セキュアなコード生成を改善することができる。
論文 参考訳(メタデータ) (2024-08-17T02:51:27Z) - Is Your AI-Generated Code Really Safe? Evaluating Large Language Models on Secure Code Generation with CodeSecEval [20.959848710829878]
大規模言語モデル(LLM)は、コード生成とコード修復に大きな進歩をもたらした。
しかし、GitHubのようなオープンソースのリポジトリから無防備なデータを使用したトレーニングは、セキュリティ上の脆弱性を必然的に伝播するリスクを増大させる。
我々は,コードLLMのセキュリティ面を正確に評価し,拡張することを目的とした総合的研究を提案する。
論文 参考訳(メタデータ) (2024-07-02T16:13:21Z) - Can We Trust Large Language Models Generated Code? A Framework for In-Context Learning, Security Patterns, and Code Evaluations Across Diverse LLMs [2.7138982369416866]
大規模言語モデル(LLM)は、ソフトウェア工学における自動コード生成に革命をもたらした。
しかし、生成されたコードのセキュリティと品質に関する懸念が持ち上がっている。
本研究は,LLMの行動学習をセキュアにするための枠組みを導入することで,これらの課題に対処することを目的とする。
論文 参考訳(メタデータ) (2024-06-18T11:29:34Z) - Unveiling the Misuse Potential of Base Large Language Models via In-Context Learning [61.2224355547598]
大規模言語モデル(LLM)のオープンソース化は、アプリケーション開発、イノベーション、科学的進歩を加速させる。
我々の調査は、この信念に対する重大な監視を露呈している。
我々の研究は、慎重に設計されたデモを配置することにより、ベースLSMが悪意のある命令を効果的に解釈し実行できることを実証する。
論文 参考訳(メタデータ) (2024-04-16T13:22:54Z) - ALERT: A Comprehensive Benchmark for Assessing Large Language Models' Safety through Red Teaming [64.86326523181553]
ALERTは、新しいきめ細かいリスク分類に基づいて安全性を評価するための大規模なベンチマークである。
脆弱性を特定し、改善を通知し、言語モデルの全体的な安全性を高めることを目的としている。
論文 参考訳(メタデータ) (2024-04-06T15:01:47Z) - Enhancing Large Language Models for Secure Code Generation: A
Dataset-driven Study on Vulnerability Mitigation [24.668682498171776]
大規模言語モデル(LLM)はコード生成に大きな進歩をもたらし、初心者と経験豊富な開発者の両方に恩恵を与えている。
しかし、GitHubのようなオープンソースのリポジトリから無防備なデータを使用したトレーニングは、セキュリティ上の脆弱性を不注意に伝播するリスクをもたらす。
本稿では,ソフトウェアセキュリティの観点からのLLMの評価と拡張に焦点をあてた総合的研究について述べる。
論文 参考訳(メタデータ) (2023-10-25T00:32:56Z) - Red Teaming Language Model Detectors with Language Models [114.36392560711022]
大規模言語モデル(LLM)は、悪意のあるユーザによって悪用された場合、重大な安全性と倫理的リスクをもたらす。
近年,LLM生成テキストを検出し,LLMを保護するアルゴリズムが提案されている。
1) LLMの出力中の特定の単語を, 文脈が与えられたシノニムに置き換えること, 2) 生成者の書き方を変更するための指示プロンプトを自動で検索すること,である。
論文 参考訳(メタデータ) (2023-05-31T10:08:37Z) - CodeLMSec Benchmark: Systematically Evaluating and Finding Security
Vulnerabilities in Black-Box Code Language Models [58.27254444280376]
自動コード生成のための大規模言語モデル(LLM)は、いくつかのプログラミングタスクにおいてブレークスルーを達成した。
これらのモデルのトレーニングデータは、通常、インターネット(例えばオープンソースのリポジトリから)から収集され、障害やセキュリティ上の脆弱性を含む可能性がある。
この不衛生なトレーニングデータは、言語モデルにこれらの脆弱性を学習させ、コード生成手順中にそれを伝播させる可能性がある。
論文 参考訳(メタデータ) (2023-02-08T11:54:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。