論文の概要: Jailbreaking Large Language Models with Symbolic Mathematics
- arxiv url: http://arxiv.org/abs/2409.11445v2
- Date: Tue, 5 Nov 2024 08:46:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 20:01:55.134921
- Title: Jailbreaking Large Language Models with Symbolic Mathematics
- Title(参考訳): 記号数学を用いた大規模言語モデルのジェイルブレイク
- Authors: Emet Bethany, Mazal Bethany, Juan Arturo Nolazco Flores, Sumit Kumar Jha, Peyman Najafirad,
- Abstract要約: AI安全性の最近の進歩は、安全でないコンテンツ生成を緩和するために、大規模な言語モデル(LLM)のトレーニングと再チームの強化につながっている。
本稿では, シンボル数学におけるLLMの高度な能力を利用して, 安全機構を回避した新しいジェイルブレイク手法であるMathPromptを紹介する。
- 参考スコア(独自算出の注目度): 6.31180501514722
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advancements in AI safety have led to increased efforts in training and red-teaming large language models (LLMs) to mitigate unsafe content generation. However, these safety mechanisms may not be comprehensive, leaving potential vulnerabilities unexplored. This paper introduces MathPrompt, a novel jailbreaking technique that exploits LLMs' advanced capabilities in symbolic mathematics to bypass their safety mechanisms. By encoding harmful natural language prompts into mathematical problems, we demonstrate a critical vulnerability in current AI safety measures. Our experiments across 13 state-of-the-art LLMs reveal an average attack success rate of 73.6\%, highlighting the inability of existing safety training mechanisms to generalize to mathematically encoded inputs. Analysis of embedding vectors shows a substantial semantic shift between original and encoded prompts, helping explain the attack's success. This work emphasizes the importance of a holistic approach to AI safety, calling for expanded red-teaming efforts to develop robust safeguards across all potential input types and their associated risks.
- Abstract(参考訳): AI安全性の最近の進歩は、安全でないコンテンツ生成を緩和するために、大規模な言語モデル(LLM)のトレーニングと再チームの強化につながっている。
しかし、これらの安全性メカニズムは包括的ではなく、潜在的な脆弱性は未調査のままである。
本稿では, シンボル数学におけるLLMの高度な能力を利用して, 安全機構を回避した新しいジェイルブレイク手法であるMathPromptを紹介する。
有害な自然言語プロンプトを数学的問題にエンコードすることにより、現在のAI安全対策において重大な脆弱性を示す。
13の最先端のLSMを対象とした実験では、73.6\%の平均攻撃成功率が示され、数学的に符号化された入力を一般化する既存の安全訓練機構の欠如が浮かび上がっている。
埋め込みベクトルの解析は、元のプロンプトとエンコードされたプロンプトの間に意味的な変化を示し、攻撃の成功を説明するのに役立つ。
この研究は、AIの安全性に対する全体的アプローチの重要性を強調しており、あらゆる潜在的な入力タイプとその関連するリスクに対して堅牢なセーフガードを開発するための、レッドチーム活動の拡大を求めている。
関連論文リスト
- In-Context Experience Replay Facilitates Safety Red-Teaming of Text-to-Image Diffusion Models [97.82118821263825]
テキスト・ツー・イメージ(T2I)モデルは目覚ましい進歩を見せているが、有害なコンテンツを生成する可能性はまだMLコミュニティにとって重要な関心事である。
ICERは,解釈可能かつ意味論的に意味のある重要なプロンプトを生成する新しい赤チームフレームワークである。
我々の研究は、より堅牢な安全メカニズムをT2Iシステムで開発するための重要な洞察を提供する。
論文 参考訳(メタデータ) (2024-11-25T04:17:24Z) - Defining and Evaluating Physical Safety for Large Language Models [62.4971588282174]
大型言語モデル (LLM) は、ドローンのようなロボットシステムを制御するためにますます使われている。
現実世界のアプリケーションに物理的な脅威や害をもたらすリスクは、まだ解明されていない。
我々は,ドローンの物理的安全性リスクを,(1)目標脅威,(2)目標脅威,(3)インフラ攻撃,(4)規制違反の4つのカテゴリに分類する。
論文 参考訳(メタデータ) (2024-11-04T17:41:25Z) - Jailbreaking and Mitigation of Vulnerabilities in Large Language Models [4.564507064383306]
大規模言語モデル(LLM)は、自然言語の理解と生成を前進させることで、人工知能を変革した。
これらの進歩にもかかわらず、LSMは、特に注射と脱獄攻撃を急ぐために、かなりの脆弱性を示してきた。
このレビューでは、これらの脆弱性についての研究状況を分析し、利用可能な防衛戦略を提示する。
論文 参考訳(メタデータ) (2024-10-20T00:00:56Z) - Recent advancements in LLM Red-Teaming: Techniques, Defenses, and Ethical Considerations [0.0]
大規模言語モデル(LLM)は自然言語処理タスクにおいて顕著な機能を示しているが、Jailbreak攻撃に対する脆弱性は重大なセキュリティリスクをもたらす。
本稿では,Large Language Model (LLM) のレッドチームにおける攻撃戦略と防御機構の最近の進歩を包括的に分析する。
論文 参考訳(メタデータ) (2024-10-09T01:35:38Z) - The Dark Side of Function Calling: Pathways to Jailbreaking Large Language Models [8.423787598133972]
本稿では,大規模言語モデル(LLM)の関数呼び出しプロセスにおける重大な脆弱性を明らかにする。
本稿では,アライメントの相違,ユーザ強制,厳密な安全フィルタの欠如を生かした,新しい"jailbreak function"攻撃手法を提案する。
本研究は,LLMの機能呼び出し機能において,緊急のセキュリティ対策の必要性を浮き彫りにした。
論文 参考訳(メタデータ) (2024-07-25T10:09:21Z) - CodeAttack: Revealing Safety Generalization Challenges of Large Language Models via Code Completion [117.178835165855]
本稿では,自然言語入力をコード入力に変換するフレームワークであるCodeAttackを紹介する。
我々の研究は、コード入力に対するこれらのモデルの新たな、普遍的な安全性の脆弱性を明らかにした。
CodeAttackと自然言語の分布ギャップが大きくなると、安全性の一般化が弱くなる。
論文 参考訳(メタデータ) (2024-03-12T17:55:38Z) - A Comprehensive Study of Jailbreak Attack versus Defense for Large Language Models [20.40158210837289]
Vicuna, LLama, GPT-3.5 Turboの3つの異なる言語モデルに適用した9つの攻撃手法と7つの防御手法について検討した。
以上の結果から,既存のホワイトボックス攻撃は普遍的手法に比べて性能が低く,入力に特別なトークンを含むと,攻撃成功の可能性に大きな影響を及ぼすことが明らかとなった。
論文 参考訳(メタデータ) (2024-02-21T01:26:39Z) - Highlighting the Safety Concerns of Deploying LLMs/VLMs in Robotics [54.57914943017522]
本稿では,大規模言語モデル (LLMs) と視覚言語モデル (VLMs) をロボティクスアプリケーションに統合する際のロバスト性と安全性に関する重要な課題を強調する。
論文 参考訳(メタデータ) (2024-02-15T22:01:45Z) - Jailbroken: How Does LLM Safety Training Fail? [92.8748773632051]
ChatGPTの初期リリースに対する"jailbreak"攻撃は、望ましくない振る舞いを引き起こす。
このような攻撃がなぜ成功し、どのように発生できるかを考察する。
障害モードを利用した新たな攻撃は、安全でない要求の収集において、すべてのプロンプトで成功します。
論文 参考訳(メタデータ) (2023-07-05T17:58:10Z) - Inspect, Understand, Overcome: A Survey of Practical Methods for AI
Safety [54.478842696269304]
安全クリティカルなアプリケーションにディープニューラルネットワーク(DNN)を使用することは、多数のモデル固有の欠点のために困難です。
近年,これらの安全対策を目的とした最先端技術動物園が出現している。
本稿は、機械学習の専門家と安全エンジニアの両方に対処する。
論文 参考訳(メタデータ) (2021-04-29T09:54:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。