論文の概要: Multiple Access in the Era of Distributed Computing and Edge Intelligence
- arxiv url: http://arxiv.org/abs/2403.07903v1
- Date: Mon, 26 Feb 2024 11:04:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-18 06:00:28.651899
- Title: Multiple Access in the Era of Distributed Computing and Edge Intelligence
- Title(参考訳): 分散コンピューティングとエッジインテリジェンスの時代における多重アクセス
- Authors: Nikos G. Evgenidis, Nikos A. Mitsiou, Vasiliki I. Koutsioumpa, Sotiris A. Tegos, Panagiotis D. Diamantoulakis, George K. Karagiannidis,
- Abstract要約: まず,マルチアクセスエッジコンピューティング(MEC)について検討し,ネットワークのエッジにおけるデータ処理と計算能力の増大に対応するために重要である。
次に,様々な関数を高速かつ効率的に計算する手法として,OTA(Over-the-air)コンピューティングについて検討する。
機械学習(ML)とマルチアクセステクノロジの分離についても、フェデレーションラーニング、強化ラーニング、MLベースのマルチアクセスプロトコルの開発に重点が置かれている。
- 参考スコア(独自算出の注目度): 23.65754442262314
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper focuses on the latest research and innovations in fundamental next-generation multiple access (NGMA) techniques and the coexistence with other key technologies for the sixth generation (6G) of wireless networks. In more detail, we first examine multi-access edge computing (MEC), which is critical to meeting the growing demand for data processing and computational capacity at the edge of the network, as well as network slicing. We then explore over-the-air (OTA) computing, which is considered to be an approach that provides fast and efficient computation of various functions. We also explore semantic communications, identified as an effective way to improve communication systems by focusing on the exchange of meaningful information, thus minimizing unnecessary data and increasing efficiency. The interrelationship between machine learning (ML) and multiple access technologies is also reviewed, with an emphasis on federated learning, federated distillation, split learning, reinforcement learning, and the development of ML-based multiple access protocols. Finally, the concept of digital twinning and its role in network management is discussed, highlighting how virtual replication of physical networks can lead to improvements in network efficiency and reliability.
- Abstract(参考訳): 本稿では,次世代マルチアクセス技術(NGMA)の最近の研究と革新と,無線ネットワークの第6世代(6G)における他の重要な技術との共存に焦点を当てる。
より詳しくは、ネットワークのエッジにおけるデータ処理と計算能力の増大とネットワークスライシングの需要を満たすために重要なマルチアクセスエッジコンピューティング(MEC)について検討する。
次に,様々な関数を高速かつ効率的に計算する手法として,OTA(Over-the-air)コンピューティングについて検討する。
また,意味情報の交換に着目し,不要なデータを最小限に抑え,効率を高めることで,コミュニケーションシステムを改善する効果的な方法として認識される意味コミュニケーションについても検討する。
機械学習(ML)とマルチアクセス技術との相互関係についても、フェデレーションラーニング、フェデレーション蒸留、分割学習、強化学習、MLベースのマルチアクセスプロトコルの開発に重点が置かれている。
最後に、デジタルツインニングの概念とそのネットワーク管理における役割について論じ、物理ネットワークの仮想レプリケーションがネットワーク効率と信頼性の向上につながることを強調した。
関連論文リスト
- Towards Scalable Wireless Federated Learning: Challenges and Solutions [40.68297639420033]
効果的な分散機械学習フレームワークとして、フェデレートラーニング(FL)が登場します。
本稿では,ネットワーク設計と資源オーケストレーションの両面から,スケーラブルな無線FLを実現する上での課題と解決策について論じる。
論文 参考訳(メタデータ) (2023-10-08T08:55:03Z) - Deep Transfer Learning: A Novel Collaborative Learning Model for
Cyberattack Detection Systems in IoT Networks [17.071452978622123]
フェデレートラーニング(FL)は近年,サイバー攻撃検知システムにおいて有効なアプローチとなっている。
FLは学習効率を改善し、通信オーバーヘッドを減らし、サイバー攻撃検知システムのプライバシーを高める。
このようなシステムにおけるFLの実装上の課題は、ラベル付きデータの可用性の欠如と、異なるIoTネットワークにおけるデータ機能の相違である。
論文 参考訳(メタデータ) (2021-12-02T05:26:29Z) - Federated Learning over Wireless IoT Networks with Optimized
Communication and Resources [98.18365881575805]
協調学習技術のパラダイムとしてのフェデレートラーニング(FL)は研究の注目を集めている。
無線システム上での高速応答および高精度FLスキームの検証が重要である。
提案する通信効率のよいフェデレーション学習フレームワークは,強い線形速度で収束することを示す。
論文 参考訳(メタデータ) (2021-10-22T13:25:57Z) - In-Network Learning: Distributed Training and Inference in Networks [10.635097939284753]
我々は,複数のデータストリームと処理ユニットを利用する学習アルゴリズムとアーキテクチャを開発する。
特に、この分析は、推論がネットワークをまたいでどのように伝播し、融合するかを明らかにする。
論文 参考訳(メタデータ) (2021-07-07T18:35:08Z) - Distributed Learning in Wireless Networks: Recent Progress and Future
Challenges [170.35951727508225]
次世代のワイヤレスネットワークは、エッジデバイスが収集するさまざまな種類のデータを分析する多くの機械学習ツールやアプリケーションを可能にする。
エッジデバイスが生データ交換なしでMLモデルを協調的にトレーニングできるようにする手段として,分散学習と推論技術が提案されている。
本稿では,ワイヤレスエッジネットワーク上で分散学習を効率的に効果的に展開する方法を包括的に研究する。
論文 参考訳(メタデータ) (2021-04-05T20:57:56Z) - Toward Multiple Federated Learning Services Resource Sharing in Mobile
Edge Networks [88.15736037284408]
本稿では,マルチアクセスエッジコンピューティングサーバにおいて,複数のフェデレーション付き学習サービスの新たなモデルについて検討する。
共同資源最適化とハイパーラーニング率制御の問題,すなわちMS-FEDLを提案する。
シミュレーションの結果,提案アルゴリズムの収束性能を実証した。
論文 参考訳(メタデータ) (2020-11-25T01:29:41Z) - Communicate to Learn at the Edge [21.673987528292773]
機械学習技術は、多くの新しいサービスやビジネスを可能にするだけでなく、技術的な課題や研究課題も生み出す。
MLアルゴリズムの成功に重要な2つの要因は、大量のデータと処理能力である。
本稿では,エッジ学習の訓練段階と推論段階の両方において,共同コミュニケーションと学習パラダイムを論じる。
論文 参考訳(メタデータ) (2020-09-28T12:33:31Z) - A Tutorial on Ultra-Reliable and Low-Latency Communications in 6G:
Integrating Domain Knowledge into Deep Learning [115.75967665222635]
超信頼性・低レイテンシ通信(URLLC)は、様々な新しいミッションクリティカルなアプリケーションの開発の中心となる。
ディープラーニングアルゴリズムは、将来の6GネットワークでURLLCを実現する技術を開発するための有望な方法と考えられている。
このチュートリアルでは、URLLCのさまざまなディープラーニングアルゴリズムにドメイン知識を組み込む方法について説明する。
論文 参考訳(メタデータ) (2020-09-13T14:53:01Z) - From Federated to Fog Learning: Distributed Machine Learning over
Heterogeneous Wireless Networks [71.23327876898816]
フェデレートラーニング(Federated Learning)は、データを収集するノード間で処理能力を活用することによって、ネットワークエッジでMLモデルをトレーニングするテクニックとして登場した。
我々は、エッジデバイスからクラウドサーバへのノード連続体にMLモデルのトレーニングをインテリジェントに分散する、フォグラーニングと呼ばれる新しい学習パラダイムを提唱する。
論文 参考訳(メタデータ) (2020-06-07T05:11:18Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
まず,データ駆動型教師付き深層学習と深部強化学習をURLLCに適用する方法を概説する。
このようなオープンな問題に対処するために、デバイスインテリジェンス、エッジインテリジェンス、およびURLLCのためのクラウドインテリジェンスを可能にするマルチレベルアーキテクチャを開発した。
論文 参考訳(メタデータ) (2020-02-22T14:38:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。