Deep Transfer Learning: A Novel Collaborative Learning Model for
Cyberattack Detection Systems in IoT Networks
- URL: http://arxiv.org/abs/2112.00988v1
- Date: Thu, 2 Dec 2021 05:26:29 GMT
- Title: Deep Transfer Learning: A Novel Collaborative Learning Model for
Cyberattack Detection Systems in IoT Networks
- Authors: Tran Viet Khoa, Dinh Thai Hoang, Nguyen Linh Trung, Cong T. Nguyen,
Tran Thi Thuy Quynh, Diep N. Nguyen, Nguyen Viet Ha and Eryk Dutkiewicz
- Abstract summary: Federated Learning (FL) has recently become an effective approach for cyberattack detection systems.
FL can improve learning efficiency, reduce communication overheads and enhance privacy for cyberattack detection systems.
Challenges in implementation of FL in such systems include unavailability of labeled data and dissimilarity of data features in different IoT networks.
- Score: 17.071452978622123
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Federated Learning (FL) has recently become an effective approach for
cyberattack detection systems, especially in Internet-of-Things (IoT) networks.
By distributing the learning process across IoT gateways, FL can improve
learning efficiency, reduce communication overheads and enhance privacy for
cyberattack detection systems. Challenges in implementation of FL in such
systems include unavailability of labeled data and dissimilarity of data
features in different IoT networks. In this paper, we propose a novel
collaborative learning framework that leverages Transfer Learning (TL) to
overcome these challenges. Particularly, we develop a novel collaborative
learning approach that enables a target network with unlabeled data to
effectively and quickly learn knowledge from a source network that possesses
abundant labeled data. It is important that the state-of-the-art studies
require the participated datasets of networks to have the same features, thus
limiting the efficiency, flexibility as well as scalability of intrusion
detection systems. However, our proposed framework can address these problems
by exchanging the learning knowledge among various deep learning models, even
when their datasets have different features. Extensive experiments on recent
real-world cybersecurity datasets show that the proposed framework can improve
more than 40% as compared to the state-of-the-art deep learning based
approaches.
Related papers
- Enhanced Anomaly Detection in Industrial Control Systems aided by Machine Learning [2.2457306746668766]
This study investigates whether combining both network and process data can improve attack detection in ICSs environments.
Our findings suggest that integrating network traffic with operational process data can enhance detection capabilities.
Although the results are promising, they are preliminary and highlight the need for further studies.
arXiv Detail & Related papers (2024-10-25T17:41:33Z) - A Cutting-Edge Deep Learning Method For Enhancing IoT Security [0.0]
This paper proposes an innovative design of the Internet of Things (IoT) Environment Intrusion Detection System (or IDS) using Deep Learning-integrated Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) networks.
Our model, based on the CICIDS 2017 dataset, achieved an accuracy of 99.52% in classifying network traffic as either benign or malicious.
arXiv Detail & Related papers (2024-06-18T08:42:51Z) - Deep Learning Approaches for Network Traffic Classification in the
Internet of Things (IoT): A Survey [0.0]
The Internet of Things (IoT) has witnessed unprecedented growth, resulting in a massive influx of diverse network traffic from interconnected devices.
Effectively classifying this network traffic is crucial for optimizing resource allocation, enhancing security measures, and ensuring efficient network management in IoT systems.
Deep learning has emerged as a powerful technique for network traffic classification due to its ability to automatically learn complex patterns and representations from raw data.
arXiv Detail & Related papers (2024-02-01T14:33:24Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - Federated Deep Learning for Intrusion Detection in IoT Networks [1.3097853961043058]
A common approach to implementing AI-based Intrusion Detection systems (IDSs) in distributed IoT systems is in a centralised manner.
This approach may violate data privacy and prohibit IDS scalability.
We design an experiment representative of the real world and evaluate the performance of an FL-based IDS.
arXiv Detail & Related papers (2023-06-05T09:08:24Z) - An Interpretable Federated Learning-based Network Intrusion Detection
Framework [9.896258523574424]
FEDFOREST is a novel learning-based NIDS that combines interpretable Gradient Boosting Decision Tree (GBDT) and Federated Learning (FL) framework.
FEDFOREST is composed of multiple clients that extract local cyberattack data features for the server to train models and detect intrusions.
Experiments on 4 cyberattack datasets demonstrate that FEDFOREST is effective, efficient, interpretable, and extendable.
arXiv Detail & Related papers (2022-01-10T02:12:32Z) - Federated Learning over Wireless IoT Networks with Optimized
Communication and Resources [98.18365881575805]
Federated learning (FL) as a paradigm of collaborative learning techniques has obtained increasing research attention.
It is of interest to investigate fast responding and accurate FL schemes over wireless systems.
We show that the proposed communication-efficient federated learning framework converges at a strong linear rate.
arXiv Detail & Related papers (2021-10-22T13:25:57Z) - Distributed Learning in Wireless Networks: Recent Progress and Future
Challenges [170.35951727508225]
Next-generation wireless networks will enable many machine learning (ML) tools and applications to analyze various types of data collected by edge devices.
Distributed learning and inference techniques have been proposed as a means to enable edge devices to collaboratively train ML models without raw data exchanges.
This paper provides a comprehensive study of how distributed learning can be efficiently and effectively deployed over wireless edge networks.
arXiv Detail & Related papers (2021-04-05T20:57:56Z) - CosSGD: Nonlinear Quantization for Communication-efficient Federated
Learning [62.65937719264881]
Federated learning facilitates learning across clients without transferring local data on these clients to a central server.
We propose a nonlinear quantization for compressed gradient descent, which can be easily utilized in federated learning.
Our system significantly reduces the communication cost by up to three orders of magnitude, while maintaining convergence and accuracy of the training process.
arXiv Detail & Related papers (2020-12-15T12:20:28Z) - A Tutorial on Ultra-Reliable and Low-Latency Communications in 6G:
Integrating Domain Knowledge into Deep Learning [115.75967665222635]
Ultra-reliable and low-latency communications (URLLC) will be central for the development of various emerging mission-critical applications.
Deep learning algorithms have been considered as promising ways of developing enabling technologies for URLLC in future 6G networks.
This tutorial illustrates how domain knowledge can be integrated into different kinds of deep learning algorithms for URLLC.
arXiv Detail & Related papers (2020-09-13T14:53:01Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
We first summarize how to apply data-driven supervised deep learning and deep reinforcement learning in URLLC.
To address these open problems, we develop a multi-level architecture that enables device intelligence, edge intelligence, and cloud intelligence for URLLC.
arXiv Detail & Related papers (2020-02-22T14:38:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.