論文の概要: Physics-informed generative model for drug-like molecule conformers
- arxiv url: http://arxiv.org/abs/2403.07925v2
- Date: Fri, 15 Mar 2024 00:21:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-18 21:54:39.571983
- Title: Physics-informed generative model for drug-like molecule conformers
- Title(参考訳): 薬物様分子コンホメータの物理インフォームド生成モデル
- Authors: David C. Williams, Neil Inala,
- Abstract要約: 共振器生成のための拡散型生成モデルを提案する。
我々のモデルは結合構造の再現に焦点をあてており、古典的な力場において伝統的に見られる関連する用語から構築されている。
ディープラーニングは、トレーニングセットから原子タイピングと幾何学的パラメータを推測するために使用される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We present a diffusion-based, generative model for conformer generation. Our model is focused on the reproduction of bonded structure and is constructed from the associated terms traditionally found in classical force fields to ensure a physically relevant representation. Techniques in deep learning are used to infer atom typing and geometric parameters from a training set. Conformer sampling is achieved by taking advantage of recent advancements in diffusion-based generation. By training on large, synthetic data sets of diverse, drug-like molecules optimized with the semiempirical GFN2-xTB method, high accuracy is achieved for bonded parameters, exceeding that of conventional, knowledge-based methods. Results are also compared to experimental structures from the Protein Databank (PDB) and Cambridge Structural Database (CSD).
- Abstract(参考訳): 共振器生成のための拡散型生成モデルを提案する。
我々のモデルは結合構造の再現に焦点をあて、古典的な力場において伝統的に見られる関連する用語から構成され、物理的に関係のある表現を確実にする。
深層学習の技法は、トレーニングセットから原子タイピングと幾何学的パラメータを推測するために用いられる。
拡散型生成の最近の進歩を生かして, コンバータサンプリングを実現する。
半経験的GFN2-xTB法で最適化された多種多様な薬物様分子の大規模な合成データセットをトレーニングすることにより、従来の知識に基づく手法よりも高い精度で結合パラメーターを得ることができる。
また、タンパク質データバンク(PDB)とケンブリッジ構造データベース(CSD)の実験構造と比較した。
関連論文リスト
- Structure Language Models for Protein Conformation Generation [66.42864253026053]
伝統的な物理学に基づくシミュレーション手法は、しばしばサンプリング平衡整合に苦しむ。
深い生成モデルは、より効率的な代替としてタンパク質のコンホメーションを生成することを約束している。
本稿では,効率的なタンパク質コンホメーション生成のための新しいフレームワークとして構造言語モデリングを紹介する。
論文 参考訳(メタデータ) (2024-10-24T03:38:51Z) - SPIN: SE(3)-Invariant Physics Informed Network for Binding Affinity Prediction [3.406882192023597]
タンパク質-リガンド結合親和性の正確な予測は、薬物開発に不可欠である。
伝統的な手法は、しばしば複合体の空間情報を正確にモデル化するのに失敗する。
この課題に適用可能な様々な帰納バイアスを組み込んだモデルSPINを提案する。
論文 参考訳(メタデータ) (2024-07-10T08:40:07Z) - Investigating the Behavior of Diffusion Models for Accelerating
Electronic Structure Calculations [24.116064925926914]
機械学習を用いた電子構造計算を著しく高速化する可能性による調査
モデルがポテンシャルエネルギー表面の1次構造について学習し、その後高次構造について学習することを示す。
構造緩和のために、このモデルは、小さな有機分子の古典的な力場によって生成されるものよりも10倍低いエネルギーのジオメトリを見つける。
論文 参考訳(メタデータ) (2023-11-02T17:58:37Z) - Leveraging Side Information for Ligand Conformation Generation using
Diffusion-Based Approaches [12.71967232020327]
リガンド分子コンホメーション生成は、薬物発見において重要な課題である。
この問題を解決するためにディープラーニングモデルが開発されている。
これらのモデルはしばしば、本質的な側情報がないため、意味のある構造やランダム性を欠いたコンフォメーションを生成する。
論文 参考訳(メタデータ) (2023-08-02T09:56:47Z) - DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained
Diffusion [66.21290235237808]
本稿では,データセットからのインスタンスのバッチを進化状態にエンコードするエネルギー制約拡散モデルを提案する。
任意のインスタンス対間の対拡散強度に対する閉形式最適推定を示唆する厳密な理論を提供する。
各種タスクにおいて優れた性能を有する汎用エンコーダバックボーンとして,本モデルの適用性を示す実験を行った。
論文 参考訳(メタデータ) (2023-01-23T15:18:54Z) - From Static to Dynamic Structures: Improving Binding Affinity Prediction with Graph-Based Deep Learning [40.83037811977803]
Dynaformerは、タンパク質-リガンド結合親和性を予測するために開発されたグラフベースのディープラーニングモデルである。
CASF-2016ベンチマークデータセットでは、最先端のスコアとランキングの能力を示している。
熱ショックタンパク質90(HSP90)の仮想スクリーニングにおいて、20の候補を同定し、それらの結合親和性を実験的に検証する。
論文 参考訳(メタデータ) (2022-08-19T14:55:12Z) - Molecular Attributes Transfer from Non-Parallel Data [57.010952598634944]
分子最適化をスタイル伝達問題として定式化し、非並列データの2つのグループ間の内部差を自動的に学習できる新しい生成モデルを提案する。
毒性修飾と合成性向上という2つの分子最適化タスクの実験により,本モデルがいくつかの最先端手法を著しく上回ることを示した。
論文 参考訳(メタデータ) (2021-11-30T06:10:22Z) - A deep learning driven pseudospectral PCE based FFT homogenization
algorithm for complex microstructures [68.8204255655161]
提案手法は,従来の手法よりも高速に評価できる一方で,興味の中心モーメントを予測できることを示す。
提案手法は,従来の手法よりも高速に評価できると同時に,興味の中心モーメントを予測できることを示す。
論文 参考訳(メタデータ) (2021-10-26T07:02:14Z) - Learning Neural Generative Dynamics for Molecular Conformation
Generation [89.03173504444415]
分子グラフから分子コンフォメーション(つまり3d構造)を生成する方法を検討した。
分子グラフから有効かつ多様なコンフォーメーションを生成する新しい確率論的枠組みを提案する。
論文 参考訳(メタデータ) (2021-02-20T03:17:58Z) - Hyperbolic Neural Networks++ [66.16106727715061]
ニューラルネットワークの基本成分を1つの双曲幾何モデル、すなわちポアンカーの球モデルで一般化する。
実験により, 従来の双曲成分と比較してパラメータ効率が優れ, ユークリッド成分よりも安定性と性能が優れていた。
論文 参考訳(メタデータ) (2020-06-15T08:23:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。