MolBind: Multimodal Alignment of Language, Molecules, and Proteins
- URL: http://arxiv.org/abs/2403.08167v2
- Date: Wed, 3 Apr 2024 01:00:53 GMT
- Title: MolBind: Multimodal Alignment of Language, Molecules, and Proteins
- Authors: Teng Xiao, Chao Cui, Huaisheng Zhu, Vasant G. Honavar,
- Abstract summary: MolBind is a framework that trains encoders for multiple modalities through contrastive learning.
MolBind shows superior zero-shot learning performance across a wide range of tasks.
- Score: 16.98169256565552
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in biology and chemistry have leveraged multi-modal learning, integrating molecules and their natural language descriptions to enhance drug discovery. However, current pre-training frameworks are limited to two modalities, and designing a unified network to process different modalities (e.g., natural language, 2D molecular graphs, 3D molecular conformations, and 3D proteins) remains challenging due to inherent gaps among them. In this work, we propose MolBind, a framework that trains encoders for multiple modalities through contrastive learning, mapping all modalities to a shared feature space for multi-modal semantic alignment. To facilitate effective pre-training of MolBind on multiple modalities, we also build and collect a high-quality dataset with four modalities, MolBind-M4, including graph-language, conformation-language, graph-conformation, and conformation-protein paired data. MolBind shows superior zero-shot learning performance across a wide range of tasks, demonstrating its strong capability of capturing the underlying semantics of multiple modalities.
Related papers
- MolMix: A Simple Yet Effective Baseline for Multimodal Molecular Representation Learning [17.93173928602627]
We propose a simple transformer-based baseline for multimodal molecular representation learning.
We integrate three distinct modalities: SMILES strings, 2D graph representations, and 3D conformers of molecules.
Despite its simplicity, our approach achieves state-of-the-art results across multiple datasets.
arXiv Detail & Related papers (2024-10-10T14:36:58Z) - MIO: A Foundation Model on Multimodal Tokens [74.85153216521945]
We introduce MIO, a novel foundation model built on multimodal tokens.
MIO is capable of understanding and generating speech, text, images, and videos in an end-to-end, autoregressive manner.
arXiv Detail & Related papers (2024-09-26T09:57:16Z) - MolX: Enhancing Large Language Models for Molecular Learning with A Multi-Modal Extension [34.586861881519134]
Large Language Models (LLMs) with their strong task-handling capabilities have shown remarkable advancements across a spectrum of fields.
This study seeks to enhance the ability of LLMs to comprehend molecules by equipping them with a multi-modal external module, namely MolX.
In particular, instead of directly using a SMILES string to represent a molecule, we utilize specific encoders to extract fine-grained features from both SMILES string and 2D molecular graph representations.
arXiv Detail & Related papers (2024-06-10T20:25:18Z) - Instruction Multi-Constraint Molecular Generation Using a Teacher-Student Large Language Model [49.64512917330373]
We introduce a multi-constraint molecular generation large language model, TSMMG, akin to a student.
To train TSMMG, we construct a large set of text-molecule pairs by extracting molecular knowledge from these 'teachers'
We experimentally show that TSMMG remarkably performs in generating molecules meeting complex, natural language-described property requirements.
arXiv Detail & Related papers (2024-03-20T02:15:55Z) - MolTC: Towards Molecular Relational Modeling In Language Models [28.960416816491392]
We propose a novel framework for Molecular inTeraction prediction following Chain-of-Thought (CoT) theory termed MolTC.
Our experiments, conducted across various datasets involving over 4,000,000 molecular pairs, exhibit the superiority of our method over current GNN and LLM-based baselines.
arXiv Detail & Related papers (2024-02-06T07:51:56Z) - Integrating Chemical Language and Molecular Graph in Multimodal Fused Deep Learning for Drug Property Prediction [9.388979080270103]
We construct multimodal deep learning models to cover different molecular representations.
Compared with mono-modal models, our multimodal fused deep learning (MMFDL) models outperform single models in accuracy, reliability, and resistance capability against noise.
arXiv Detail & Related papers (2023-12-29T07:19:42Z) - GIT-Mol: A Multi-modal Large Language Model for Molecular Science with
Graph, Image, and Text [25.979382232281786]
We introduce GIT-Mol, a multi-modal large language model that integrates the Graph, Image, and Text information.
We achieve a 5%-10% accuracy increase in properties prediction and a 20.2% boost in molecule generation validity.
arXiv Detail & Related papers (2023-08-14T03:12:29Z) - Empowering Molecule Discovery for Molecule-Caption Translation with Large Language Models: A ChatGPT Perspective [53.300288393173204]
Large Language Models (LLMs) have shown remarkable performance in various cross-modal tasks.
In this work, we propose an In-context Few-Shot Molecule Learning paradigm for molecule-caption translation.
We evaluate the effectiveness of MolReGPT on molecule-caption translation, including molecule understanding and text-based molecule generation.
arXiv Detail & Related papers (2023-06-11T08:16:25Z) - Implicit Geometry and Interaction Embeddings Improve Few-Shot Molecular
Property Prediction [53.06671763877109]
We develop molecular embeddings that encode complex molecular characteristics to improve the performance of few-shot molecular property prediction.
Our approach leverages large amounts of synthetic data, namely the results of molecular docking calculations.
On multiple molecular property prediction benchmarks, training from the embedding space substantially improves Multi-Task, MAML, and Prototypical Network few-shot learning performance.
arXiv Detail & Related papers (2023-02-04T01:32:40Z) - mPLUG-2: A Modularized Multi-modal Foundation Model Across Text, Image
and Video [89.19867891570945]
mPLUG-2 is a new unified paradigm with modularized design for multi-modal pretraining.
It shares common universal modules for modality collaboration and disentangling different modality modules to deal with modality entanglement.
It is flexible to select different modules for different understanding and generation tasks across all modalities including text, image, and video.
arXiv Detail & Related papers (2023-02-01T12:40:03Z) - A Molecular Multimodal Foundation Model Associating Molecule Graphs with
Natural Language [63.60376252491507]
We propose a molecular multimodal foundation model which is pretrained from molecular graphs and their semantically related textual data.
We believe that our model would have a broad impact on AI-empowered fields across disciplines such as biology, chemistry, materials, environment, and medicine.
arXiv Detail & Related papers (2022-09-12T00:56:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.