Boosting Disfluency Detection with Large Language Model as Disfluency Generator
- URL: http://arxiv.org/abs/2403.08229v2
- Date: Tue, 6 Aug 2024 05:41:59 GMT
- Title: Boosting Disfluency Detection with Large Language Model as Disfluency Generator
- Authors: Zhenrong Cheng, Jiayan Guo, Hao Sun, Yan Zhang,
- Abstract summary: We propose a lightweight data augmentation approach for disfluency detection.
We leverage large language model (LLM) to generate disfluent sentences as augmentation data.
We apply an uncertainty-aware data filtering approach to improve the quality of the generated sentences.
- Score: 8.836888435915077
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Current disfluency detection methods heavily rely on costly and scarce human-annotated data. To tackle this issue, some approaches employ heuristic or statistical features to generate disfluent sentences, partially improving detection performance. However, these sentences often deviate from real-life scenarios, constraining overall model enhancement. In this study, we propose a lightweight data augmentation approach for disfluency detection, utilizing the superior generative and semantic understanding capabilities of large language model (LLM) to generate disfluent sentences as augmentation data. We leverage LLM to generate diverse and more realistic sentences guided by specific prompts, without the need for fine-tuning the LLM. Subsequently, we apply an uncertainty-aware data filtering approach to improve the quality of the generated sentences, utilized in training a small detection model for improved performance. Experiments using enhanced data yielded state-of-the-art results. The results showed that using a small amount of LLM-generated enhanced data can significantly improve performance, thereby further enhancing cost-effectiveness. Our code is available here.
Related papers
- Using Large Language Models for Expert Prior Elicitation in Predictive Modelling [53.54623137152208]
This study proposes using large language models (LLMs) to elicit expert prior distributions for predictive models.
We compare LLM-elicited and uninformative priors, evaluate whether LLMs truthfully generate parameter distributions, and propose a model selection strategy for in-context learning and prior elicitation.
Our findings show that LLM-elicited prior parameter distributions significantly reduce predictive error compared to uninformative priors in low-data settings.
arXiv Detail & Related papers (2024-11-26T10:13:39Z) - Fine-tuning can Help Detect Pretraining Data from Large Language Models [7.7209640786782385]
Current methods differentiate members and non-members by designing scoring functions, like Perplexity and Min-k%.
We introduce a novel and effective method termed Fine-tuned Score Deviation (FSD), which improves the performance of current scoring functions for pretraining data detection.
arXiv Detail & Related papers (2024-10-09T15:36:42Z) - Enhancing Unsupervised Sentence Embeddings via Knowledge-Driven Data Augmentation and Gaussian-Decayed Contrastive Learning [37.54523122932728]
We propose a pipeline-based data augmentation method via large language models (LLMs)
To tackle the issue of low data diversity, our pipeline utilizes knowledge graphs (KGs) to extract entities and quantities.
To address high data noise, the GCSE model uses a Gaussian-decayed function to limit the impact of false hard negative samples.
arXiv Detail & Related papers (2024-09-19T16:29:58Z) - A Gradient Analysis Framework for Rewarding Good and Penalizing Bad Examples in Language Models [63.949883238901414]
We present a unique angle of gradient analysis of loss functions that simultaneously reward good examples and penalize bad ones in LMs.
We find that ExMATE serves as a superior surrogate for MLE, and that combining DPO with ExMATE instead of MLE further enhances both the statistical (5-7%) and generative (+18% win rate) performance.
arXiv Detail & Related papers (2024-08-29T17:46:18Z) - Low-rank finetuning for LLMs: A fairness perspective [54.13240282850982]
Low-rank approximation techniques have become the de facto standard for fine-tuning Large Language Models.
This paper investigates the effectiveness of these methods in capturing the shift of fine-tuning datasets from the initial pre-trained data distribution.
We show that low-rank fine-tuning inadvertently preserves undesirable biases and toxic behaviors.
arXiv Detail & Related papers (2024-05-28T20:43:53Z) - CLAIM Your Data: Enhancing Imputation Accuracy with Contextual Large Language Models [0.18416014644193068]
This paper introduces the Contextual Language model for Accurate Imputation Method (CLAIM)
Unlike traditional imputation methods, CLAIM utilizes contextually relevant natural language descriptors to fill missing values.
Our evaluations across diverse datasets and missingness patterns reveal CLAIM's superior performance over existing imputation techniques.
arXiv Detail & Related papers (2024-05-28T00:08:29Z) - ALMol: Aligned Language-Molecule Translation LLMs through Offline Preference Contrastive Optimisation [2.296475290901356]
We focus on machine language-molecule translation and deploy a novel training approach called contrastive preference optimisation.
Our results demonstrate that our models achieve up to a 32% improvement compared to counterpart models.
arXiv Detail & Related papers (2024-05-14T13:59:24Z) - Improving Sampling Methods for Fine-tuning SentenceBERT in Text Streams [49.3179290313959]
This study explores the efficacy of seven text sampling methods designed to selectively fine-tune language models.
We precisely assess the impact of these methods on fine-tuning the SBERT model using four different loss functions.
Our findings indicate that Softmax loss and Batch All Triplets loss are particularly effective for text stream classification.
arXiv Detail & Related papers (2024-03-18T23:41:52Z) - Accelerating LLaMA Inference by Enabling Intermediate Layer Decoding via
Instruction Tuning with LITE [62.13435256279566]
Large Language Models (LLMs) have achieved remarkable performance across a wide variety of natural language tasks.
However, their large size makes their inference slow and computationally expensive.
We show that it enables these layers to acquire 'good' generation ability without affecting the generation ability of the final layer.
arXiv Detail & Related papers (2023-10-28T04:07:58Z) - To Repeat or Not To Repeat: Insights from Scaling LLM under Token-Crisis [50.31589712761807]
Large language models (LLMs) are notoriously token-hungry during pre-training, and high-quality text data on the web is approaching its scaling limit for LLMs.
We investigate the consequences of repeating pre-training data, revealing that the model is susceptible to overfitting.
Second, we examine the key factors contributing to multi-epoch degradation, finding that significant factors include dataset size, model parameters, and training objectives.
arXiv Detail & Related papers (2023-05-22T17:02:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.