Beyond Window-Based Detection: A Graph-Centric Framework for Discrete Log Anomaly Detection
- URL: http://arxiv.org/abs/2501.12166v1
- Date: Tue, 21 Jan 2025 14:26:03 GMT
- Title: Beyond Window-Based Detection: A Graph-Centric Framework for Discrete Log Anomaly Detection
- Authors: Jiaxing Qi, Chang Zeng, Zhongzhi Luan, Shaohan Huang, Shu Yang, Yao Lu, Hailong Yang, Depei Qian,
- Abstract summary: We propose a graph-centric framework, TempoLog, for discrete log anomaly detection.
Our method achieves state-of-the-art performance in event-level anomaly detection, significantly outperforming existing approaches in both accuracy and efficiency.
- Score: 35.817909860425026
- License:
- Abstract: Detecting anomalies in discrete event logs is critical for ensuring system reliability, security, and efficiency. Traditional window-based methods for log anomaly detection often suffer from context bias and fuzzy localization, which hinder their ability to precisely and efficiently identify anomalies. To address these challenges, we propose a graph-centric framework, TempoLog, which leverages multi-scale temporal graph networks for discrete log anomaly detection. Unlike conventional methods, TempoLog constructs continuous-time dynamic graphs directly from event logs, eliminating the need for fixed-size window grouping. By representing log templates as nodes and their temporal relationships as edges, the framework dynamically captures both local and global dependencies across multiple temporal scales. Additionally, a semantic-aware model enhances detection by incorporating rich contextual information. Extensive experiments on public datasets demonstrate that our method achieves state-of-the-art performance in event-level anomaly detection, significantly outperforming existing approaches in both accuracy and efficiency.
Related papers
- Enhancing Web Service Anomaly Detection via Fine-grained Multi-modal Association and Frequency Domain Analysis [8.860339665670255]
Anomaly detection is crucial for ensuring the stability and reliability of web service systems.
Existing anomaly detection methods use logs and metrics to detect anomalies.
We propose a novel anomaly detection method named FFAD to address these two issues.
arXiv Detail & Related papers (2025-01-28T12:00:45Z) - Detecting Anomalous Events in Object-centric Business Processes via
Graph Neural Networks [55.583478485027]
This study proposes a novel framework for anomaly detection in business processes.
We first reconstruct the process dependencies of the object-centric event logs as attributed graphs.
We then employ a graph convolutional autoencoder architecture to detect anomalous events.
arXiv Detail & Related papers (2024-02-14T14:17:56Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - TimeGraphs: Graph-based Temporal Reasoning [64.18083371645956]
TimeGraphs is a novel approach that characterizes dynamic interactions as a hierarchical temporal graph.
Our approach models the interactions using a compact graph-based representation, enabling adaptive reasoning across diverse time scales.
We evaluate TimeGraphs on multiple datasets with complex, dynamic agent interactions, including a football simulator, the Resistance game, and the MOMA human activity dataset.
arXiv Detail & Related papers (2024-01-06T06:26:49Z) - RAPID: Training-free Retrieval-based Log Anomaly Detection with PLM
considering Token-level information [7.861095039299132]
The need for log anomaly detection is growing, especially in real-world applications.
Traditional deep learning-based anomaly detection models require dataset-specific training, leading to corresponding delays.
We introduce RAPID, a model that capitalizes on the inherent features of log data to enable anomaly detection without training delays.
arXiv Detail & Related papers (2023-11-09T06:11:44Z) - GLAD: Content-aware Dynamic Graphs For Log Anomaly Detection [49.9884374409624]
GLAD is a Graph-based Log Anomaly Detection framework designed to detect anomalies in system logs.
We introduce GLAD, a Graph-based Log Anomaly Detection framework designed to detect anomalies in system logs.
arXiv Detail & Related papers (2023-09-12T04:21:30Z) - Graph Neural Networks based Log Anomaly Detection and Explanation [19.66344385835598]
Event logs are widely used to record the status of high-tech systems.
Most existing log anomaly detection methods take a log event count matrix or log event sequences as input.
We propose a graph-based method for unsupervised log anomaly detection, dubbed Logs2Graphs.
arXiv Detail & Related papers (2023-07-02T09:38:43Z) - PULL: Reactive Log Anomaly Detection Based On Iterative PU Learning [58.85063149619348]
We propose PULL, an iterative log analysis method for reactive anomaly detection based on estimated failure time windows.
Our evaluation shows that PULL consistently outperforms ten benchmark baselines across three different datasets.
arXiv Detail & Related papers (2023-01-25T16:34:43Z) - LogGD:Detecting Anomalies from System Logs by Graph Neural Networks [14.813971618949068]
We propose a novel graph-based log anomaly detection method, LogGD, to effectively address the issue.
We exploit the powerful capability of Graph Transformer Neural Network, which combines graph structure and node semantics for log-based anomaly detection.
arXiv Detail & Related papers (2022-09-16T11:51:58Z) - Self-Attentive Classification-Based Anomaly Detection in Unstructured
Logs [59.04636530383049]
We propose Logsy, a classification-based method to learn log representations.
We show an average improvement of 0.25 in the F1 score, compared to the previous methods.
arXiv Detail & Related papers (2020-08-21T07:26:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.