Misinformation is not about Bad Facts: An Analysis of the Production and Consumption of Fringe Content
- URL: http://arxiv.org/abs/2403.08391v2
- Date: Sun, 26 May 2024 06:15:33 GMT
- Title: Misinformation is not about Bad Facts: An Analysis of the Production and Consumption of Fringe Content
- Authors: JooYoung Lee, Emily Booth, Hany Farid, Marian-Andrei Rizoiu,
- Abstract summary: We examine how far-right and fringe online groups share and leverage established legacy news media articles to advance their narratives.
We found that Australian news publishers with both moderate and far-right political leanings contain comparable levels of information completeness and quality.
We can identify users prone to sharing misinformation based on their communication style.
- Score: 15.57576248694248
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: What if misinformation is not an information problem at all? To understand the role of news publishers in potentially unintentionally propagating misinformation, we examine how far-right and fringe online groups share and leverage established legacy news media articles to advance their narratives. Our findings suggest that online fringe ideologies spread through the use of content that is consensus-based and "factually correct". We found that Australian news publishers with both moderate and far-right political leanings contain comparable levels of information completeness and quality; and furthermore, that far-right Twitter users often share from moderate sources. However, a stark difference emerges when we consider two additional factors: 1) the narrow topic selection of articles by far-right users, suggesting that they cherry pick only news articles that engage with their preexisting worldviews and specific topics of concern, and 2) the difference between moderate and far-right publishers when we examine the writing style of their articles. Furthermore, we can identify users prone to sharing misinformation based on their communication style. These findings have important implications for countering online misinformation, as they highlight the powerful role that personal biases towards specific topics and publishers' writing styles have in amplifying fringe ideologies online.
Related papers
- News and Misinformation Consumption in Europe: A Longitudinal
Cross-Country Perspective [49.1574468325115]
This study investigated information consumption in four European countries.
It analyzed three years of Twitter activity from news outlet accounts in France, Germany, Italy, and the UK.
Results indicate that reliable sources dominate the information landscape, although unreliable content is still present across all countries.
arXiv Detail & Related papers (2023-11-09T16:22:10Z) - All Things Considered: Detecting Partisan Events from News Media with
Cross-Article Comparison [19.328425822355378]
We develop a latent variable-based framework to predict the ideology of news articles.
Our results reveal the high-level form of media bias, which is present even among mainstream media with strong norms of objectivity and nonpartisanship.
arXiv Detail & Related papers (2023-10-28T21:53:23Z) - Unveiling the Hidden Agenda: Biases in News Reporting and Consumption [59.55900146668931]
We build a six-year dataset on the Italian vaccine debate and adopt a Bayesian latent space model to identify narrative and selection biases.
We found a nonlinear relationship between biases and engagement, with higher engagement for extreme positions.
Analysis of news consumption on Twitter reveals common audiences among news outlets with similar ideological positions.
arXiv Detail & Related papers (2023-01-14T18:58:42Z) - News consumption and social media regulations policy [70.31753171707005]
We analyze two social media that enforced opposite moderation methods, Twitter and Gab, to assess the interplay between news consumption and content regulation.
Our results show that the presence of moderation pursued by Twitter produces a significant reduction of questionable content.
The lack of clear regulation on Gab results in the tendency of the user to engage with both types of content, showing a slight preference for the questionable ones which may account for a dissing/endorsement behavior.
arXiv Detail & Related papers (2021-06-07T19:26:32Z) - Misinfo Belief Frames: A Case Study on Covid & Climate News [49.979419711713795]
We propose a formalism for understanding how readers perceive the reliability of news and the impact of misinformation.
We introduce the Misinfo Belief Frames (MBF) corpus, a dataset of 66k inferences over 23.5k headlines.
Our results using large-scale language modeling to predict misinformation frames show that machine-generated inferences can influence readers' trust in news headlines.
arXiv Detail & Related papers (2021-04-18T09:50:11Z) - A Survey on Predicting the Factuality and the Bias of News Media [29.032850263311342]
"The state of the art on media profiling for factuality and bias"
"Political bias detection, which in the Western political landscape is about predicting left-center-right bias"
"Recent advances in using different information sources and modalities"
arXiv Detail & Related papers (2021-03-16T11:11:54Z) - Right and left, partisanship predicts (asymmetric) vulnerability to
misinformation [71.46564239895892]
We analyze the relationship between partisanship, echo chambers, and vulnerability to online misinformation by studying news sharing behavior on Twitter.
We find that vulnerability to misinformation is most strongly influenced by partisanship for both left- and right-leaning users.
arXiv Detail & Related papers (2020-10-04T01:36:14Z) - Political audience diversity and news reliability in algorithmic ranking [54.23273310155137]
We propose using the political diversity of a website's audience as a quality signal.
Using news source reliability ratings from domain experts and web browsing data from a diverse sample of 6,890 U.S. citizens, we first show that websites with more extreme and less politically diverse audiences have lower journalistic standards.
arXiv Detail & Related papers (2020-07-16T02:13:55Z) - What Was Written vs. Who Read It: News Media Profiling Using Text
Analysis and Social Media Context [32.92101895367273]
The present level of proliferation of fake, biased, and propagandistic content online, has made it impossible to fact-check every single suspicious claim.
We can profile entire news outlets and look for those that are likely to publish fake or biased content.
This approach makes it possible to detect likely "fake news" the moment they are published.
arXiv Detail & Related papers (2020-05-09T22:00:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.