論文の概要: System for systematic literature review using multiple AI agents: Concept and an empirical evaluation
- arxiv url: http://arxiv.org/abs/2403.08399v2
- Date: Sun, 21 Sep 2025 19:27:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-30 15:30:20.225931
- Title: System for systematic literature review using multiple AI agents: Concept and an empirical evaluation
- Title(参考訳): 複数のAIエージェントを用いた体系的文献レビューシステム:概念と実証的評価
- Authors: Abdul Malik Sami, Zeeshan Rasheed, Kai-Kristian Kemell, Muhammad Waseem, Terhi Kilamo, Mika Saari, Anh Nguyen Duc, Kari Systä, Pekka Abrahamsson,
- Abstract要約: 体系的文献レビュー(SLR)は証拠に基づく研究の基礎である。
本稿では,SLRの完全自動化を目的とした新しいマルチAIエージェントシステムを提案する。
包括性と精度を維持しつつ,従来のSLRに必要な時間と労力を大幅に削減できることを示す。
- 参考スコア(独自算出の注目度): 3.453564255183234
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Systematic literature review (SLR) is foundational to evidence-based research, enabling scholars to identify, classify, and synthesize existing studies to address specific research questions. Conducting an SLR is, however, largely a manual process. In recent years, researchers have made significant progress in automating portions of the SLR pipeline to reduce the effort and time required for high-quality reviews; nevertheless, there remains a lack of AI-agent-based systems that automate the entire SLR workflow. To this end, we introduce a novel multi-AI-agent system designed to fully automate SLRs. Leveraging large language models (LLMs), our system streamlines the review process to enhance efficiency and accuracy. Through a user-friendly interface, researchers specify a topic; the system then generates a search string to retrieve relevant academic papers. Next, an inclusion/exclusion filtering step is applied to titles relevant to the research area. The system subsequently summarizes paper abstracts and retains only those directly related to the field of study. In the final phase, it conducts a thorough analysis of the selected papers with respect to predefined research questions. This paper presents the system, describes its operational framework, and demonstrates how it substantially reduces the time and effort traditionally required for SLRs while maintaining comprehensiveness and precision. The code for this project is available at: https://github.com/GPT-Laboratory/SLR-automation .
- Abstract(参考訳): 体系的文献レビュー(SLR)は、証拠に基づく研究の基礎であり、研究者が既存の研究を識別し、分類し、合成し、特定の研究問題に対処することができる。
しかし、SLRを実行することは、主に手動のプロセスである。
近年、研究者は高品質なレビューに必要な労力と時間を削減するためにSLRパイプラインの一部を自動化している。
そこで本研究では,SLRの完全自動化を目的とした新しいマルチAIエージェントシステムを提案する。
大規模言語モデル(LLM)を活用することで、レビュープロセスを合理化し、効率と精度を向上させる。
ユーザフレンドリーなインターフェースを通じて、研究者はトピックを指定し、システムは関連する学術論文を検索する文字列を生成する。
次に、研究領域に関連するタイトルに包含・排他フィルタリングステップを適用する。
このシステムはその後、論文の要約を要約し、研究分野に直接関係しているもののみを保持する。
最終段階では、あらかじめ定義された研究課題に関して、選択した論文を徹底的に分析する。
本稿では,従来のSLRに必要な時間と労力を,包括性と精度を維持しながら大幅に削減する方法について述べる。
プロジェクトのコードは、https://github.com/GPT-Laboratory/SLR-automation で公開されている。
関連論文リスト
- Deep Research Agents: A Systematic Examination And Roadmap [79.04813794804377]
Deep Research (DR) エージェントは複雑な多ターン情報研究タスクに取り組むように設計されている。
本稿では,DRエージェントを構成する基礎技術とアーキテクチャコンポーネントの詳細な分析を行う。
論文 参考訳(メタデータ) (2025-06-22T16:52:48Z) - ResearchCodeAgent: An LLM Multi-Agent System for Automated Codification of Research Methodologies [16.90884865239373]
本研究では,研究方法論の体系化を自動化する新しいマルチエージェントシステムであるResearchCodeAgentを紹介する。
このシステムは、ハイレベルな研究概念と実践的な実装のギャップを埋める。
ResearchCodeAgentは、研究実施プロセスに向けた重要なステップであり、機械学習研究のペースを加速する可能性がある。
論文 参考訳(メタデータ) (2025-04-28T07:18:45Z) - A Vision for Auto Research with LLM Agents [47.310516109726656]
本稿では,科学研究の全ライフサイクルの自動化,コーディネート,最適化を目的とした構造化マルチエージェントフレームワークであるエージェントベースオートリサーチを紹介する。
このシステムは、文献レビュー、アイデア、方法論、実験、論文執筆、査読応答、普及など、すべての主要な研究段階にまたがる。
論文 参考訳(メタデータ) (2025-04-26T02:06:10Z) - Retrieval Augmented Generation for Topic Modeling in Organizational Research: An Introduction with Empirical Demonstration [0.0]
本稿では,LLMを用いたトピックモデリング手法として,エージェント検索拡張生成(Agentic RAG)を提案する。
1) LLM の事前訓練された知識を超えた外部データへの自動アクセスを可能にする検索,(2) LLM の機能を利用してテキスト合成を行う生成,(3) エージェント駆動学習, 反復的に検索とクエリの定式化を行う。
本研究は,本手法がより効率的で解釈可能であり,同時に,従来の機械学習手法と比較して信頼性と妥当性が向上することを示した。
論文 参考訳(メタデータ) (2025-02-28T11:25:11Z) - MLGym: A New Framework and Benchmark for Advancing AI Research Agents [51.9387884953294]
我々はMeta MLGymとMLGym-Benchを紹介した。これはAI研究タスクにおける大規模言語モデルの評価と開発のための新しいフレームワークとベンチマークである。
これは機械学習(ML)タスクのための最初のGym環境であり、そのようなエージェントをトレーニングするための強化学習(RL)アルゴリズムの研究を可能にする。
我々は、Claude-3.5-Sonnet、Llama-3.1 405B、GPT-4o、o1-preview、Gemini-1.5 Proなどのベンチマークで、多くのフロンティア大言語モデル(LLM)を評価した。
論文 参考訳(メタデータ) (2025-02-20T12:28:23Z) - CycleResearcher: Improving Automated Research via Automated Review [37.03497673861402]
本稿では,オープンソースの後学習型大規模言語モデル(LLM)を,自動研究とレビューの全サイクルを遂行する自律エージェントとして活用する可能性について検討する。
これらのモデルをトレーニングするために、現実の機械学習研究とピアレビューダイナミクスを反映した2つの新しいデータセットを開発した。
研究において、CycleResearcherモデルが作成した論文は、シミュレーションされたピアレビューで5.36点を獲得し、人間の専門家による5.24点を上回り、受け入れられた論文の5.69点に近づいた。
論文 参考訳(メタデータ) (2024-10-28T08:10:21Z) - From Linguistic Giants to Sensory Maestros: A Survey on Cross-Modal Reasoning with Large Language Models [56.9134620424985]
クロスモーダル推論(CMR)は、より高度な人工知能システムへの進化における重要な能力として、ますます認識されている。
CMRタスクに取り組むためにLLM(Large Language Models)をデプロイする最近のトレンドは、その有効性を高めるためのアプローチの新たな主流となっている。
本調査では,LLMを用いてCMRで適用された現在の方法論を,詳細な3階層分類に分類する。
論文 参考訳(メタデータ) (2024-09-19T02:51:54Z) - Model Merging in LLMs, MLLMs, and Beyond: Methods, Theories, Applications and Opportunities [89.40778301238642]
モデルマージは、機械学習コミュニティにおける効率的なエンパワーメント技術である。
これらの手法の体系的かつ徹底的なレビューに関する文献には大きなギャップがある。
論文 参考訳(メタデータ) (2024-08-14T16:58:48Z) - Retrieval-Enhanced Machine Learning: Synthesis and Opportunities [60.34182805429511]
検索エンハンスメントは機械学習(ML)の幅広い範囲に拡張できる
この研究は、MLの様々な領域の文献を、現在の文献から欠落している一貫した表記で合成することで、このパラダイムの正式なフレームワークであるRetrieval-Enhanced Machine Learning (REML)を導入する。
本研究の目的は、様々な分野の研究者に対して、検索強化モデルの包括的、正式に構造化された枠組みを付与し、学際的な将来の研究を促進することである。
論文 参考訳(メタデータ) (2024-07-17T20:01:21Z) - Automatic benchmarking of large multimodal models via iterative experiment programming [71.78089106671581]
本稿では,LMMの自動ベンチマークのための最初のフレームワークであるAPExを紹介する。
自然言語で表現された研究の質問に対して、APExは大きな言語モデル(LLM)と事前定義されたツールのライブラリを活用して、手元にあるモデルの一連の実験を生成する。
調査の現在の状況に基づいて、APExはどの実験を行うか、結果が結論を引き出すのに十分かどうかを選択する。
論文 参考訳(メタデータ) (2024-06-18T06:43:46Z) - RelevAI-Reviewer: A Benchmark on AI Reviewers for Survey Paper Relevance [0.8089605035945486]
本稿では,調査論文レビューの課題を分類問題として概念化するシステムであるRelevAI-Reviewerを提案する。
25,164のインスタンスからなる新しいデータセットを導入する。各インスタンスには1つのプロンプトと4つの候補論文があり、それぞれがプロンプトに関連している。
我々は,各論文の関連性を判断し,最も関連性の高い論文を識別できる機械学習(ML)モデルを開発した。
論文 参考訳(メタデータ) (2024-06-13T06:42:32Z) - Automating Research Synthesis with Domain-Specific Large Language Model Fine-Tuning [0.9110413356918055]
本研究は,SLR(Systematic Literature Reviews)の自動化にLLM(Funture-Tuned Large Language Models)を用いた先駆的研究である。
本研究は,オープンソースLLMとともに最新の微調整手法を採用し,SLRプロセスの最終実行段階を自動化するための実用的で効率的な手法を実証した。
その結果, LLM応答の精度は高く, 既存のPRISMAコンフォーミングSLRの複製により検証された。
論文 参考訳(メタデータ) (2024-04-08T00:08:29Z) - Artificial Intelligence for Literature Reviews: Opportunities and Challenges [0.0]
この写本は、システム文献レビューにおける人工知能の使用に関する包括的なレビューを提示する。
SLRは、あるトピックに関する以前の研究を評価し、統合する厳格で組織化された方法論である。
従来の23の機能と11のAI機能を組み合わせたフレームワークを用いて、主要なSLRツール21について検討する。
論文 参考訳(メタデータ) (2024-02-13T16:05:51Z) - Emerging Results on Automated Support for Searching and Selecting
Evidence for Systematic Literature Review Updates [1.1153433121962064]
本稿では,ソフトウェア工学におけるSLR更新研究の検索と選択を支援する自動手法について述べる。
我々は,機械学習(ML)アルゴリズムを用いて,雪玉探索技術を実行する自動化ツールのプロトタイプを開発し,SLR更新に関する関連する研究を選択することを支援する。
論文 参考訳(メタデータ) (2024-02-07T23:39:20Z) - Generative Judge for Evaluating Alignment [84.09815387884753]
本稿では,これらの課題に対処するために,13Bパラメータを持つ生成判断器Auto-Jを提案する。
我々のモデルは,大規模な実環境シナリオ下でのユーザクエリとLLM生成応答に基づいて訓練されている。
実験的に、Auto-Jはオープンソースモデルとクローズドソースモデルの両方を含む、強力なライバルのシリーズを上回っている。
論文 参考訳(メタデータ) (2023-10-09T07:27:15Z) - Rethinking Generalization of Neural Models: A Named Entity Recognition
Case Study [81.11161697133095]
NERタスクをテストベッドとして、異なる視点から既存モデルの一般化挙動を分析する。
詳細な分析による実験は、既存のニューラルNERモデルのボトルネックを診断する。
本論文の副産物として,最近のNER論文の包括的要約を含むプロジェクトをオープンソース化した。
論文 参考訳(メタデータ) (2020-01-12T04:33:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。