Scalable measures of magic resource for quantum computers
- URL: http://arxiv.org/abs/2204.10061v4
- Date: Tue, 13 Dec 2022 12:37:53 GMT
- Title: Scalable measures of magic resource for quantum computers
- Authors: Tobias Haug, M. S. Kim
- Abstract summary: We introduce efficient measures of magic resource for pure quantum states with a sampling cost independent of the number of qubits.
We show the transition of classically simulable stabilizer states into intractable quantum states on the IonQ quantum computer.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Non-stabilizerness or magic resource characterizes the amount of non-Clifford
operations needed to prepare quantum states. It is a crucial resource for
quantum computing and a necessary condition for quantum advantage. However,
quantifying magic resource beyond a few qubits has been a major challenge.
Here, we introduce efficient measures of magic resource for pure quantum states
with a sampling cost that is independent of the number of qubits. Our method
uses Bell measurements over two copies of a state, which we implement in
experiment together with a cost-free error mitigation scheme. We show the
transition of classically simulable stabilizer states into intractable quantum
states on the IonQ quantum computer. For applications, we efficiently
distinguish stabilizer and non-stabilizer states with low measurement cost even
in the presence of experimental noise. Further, we propose a variational
quantum algorithm to maximize our measure via the shift-rule. Our algorithm can
be free of barren plateaus even for highly expressible variational circuits.
Finally, we experimentally demonstrate a Bell measurement protocol for the
stabilizer R\'enyi entropy as well as the Wallach-Meyer entanglement measure.
Our results pave the way to understand the non-classical power of quantum
computers, quantum simulators and quantum many-body systems.
Related papers
- Solving an Industrially Relevant Quantum Chemistry Problem on Quantum Hardware [31.15746974078601]
We calculate the lowest energy eigenvalue of active space Hamiltonians of industrially relevant and strongly correlated metal chelates on trapped ion quantum hardware.
We are able to achieve chemical accuracy by training a variational quantum algorithm on quantum hardware, followed by a classical diagonalization in the subspace of states measured as outputs of the quantum circuit.
arXiv Detail & Related papers (2024-08-20T12:50:15Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Quantum State Tomography for Matrix Product Density Operators [28.799576051288888]
Reconstruction of quantum states from experimental measurements is crucial for the verification and benchmarking of quantum devices.
Many physical quantum states, such as states generated by noisy, intermediate-scale quantum computers, are usually structured.
We establish theoretical guarantees for the stable recovery of MPOs using tools from compressive sensing and the theory of empirical processes.
arXiv Detail & Related papers (2023-06-15T18:23:55Z) - Simple Tests of Quantumness Also Certify Qubits [69.96668065491183]
A test of quantumness is a protocol that allows a classical verifier to certify (only) that a prover is not classical.
We show that tests of quantumness that follow a certain template, which captures recent proposals such as (Kalai et al., 2022) can in fact do much more.
Namely, the same protocols can be used for certifying a qubit, a building-block that stands at the heart of applications such as certifiable randomness and classical delegation of quantum computation.
arXiv Detail & Related papers (2023-03-02T14:18:17Z) - The power of noisy quantum states and the advantage of resource dilution [62.997667081978825]
Entanglement distillation allows to convert noisy quantum states into singlets.
We show that entanglement dilution can increase the resilience of shared quantum states to local noise.
arXiv Detail & Related papers (2022-10-25T17:39:29Z) - Verification of colorable hypergraph states with stabilizer test [5.557807668387859]
We propose a novel fault-tolerant solution for verification of colorable hypergraph states by using stabilizer test.
As to appliance, it will be also applied to blind quantum computing.
arXiv Detail & Related papers (2022-03-18T14:32:38Z) - Efficient Bipartite Entanglement Detection Scheme with a Quantum
Adversarial Solver [89.80359585967642]
Proposal reformulates the bipartite entanglement detection as a two-player zero-sum game completed by parameterized quantum circuits.
We experimentally implement our protocol on a linear optical network and exhibit its effectiveness to accomplish the bipartite entanglement detection for 5-qubit quantum pure states and 2-qubit quantum mixed states.
arXiv Detail & Related papers (2022-03-15T09:46:45Z) - Certification of quantum states with hidden structure of their
bitstrings [0.0]
We propose a numerically cheap procedure to describe and distinguish quantum states.
We show that it is enough to characterize quantum states with different structure of entanglement.
Our approach can be employed to detect phase transitions of different nature in many-body quantum magnetic systems.
arXiv Detail & Related papers (2021-07-21T06:22:35Z) - Continuous Variable Quantum Advantages and Applications in Quantum
Optics [0.0]
This thesis focuses on three main questions in the continuous variable and optical settings.
Where does a quantum advantage, that is, the ability of quantum machines to outperform classical machines, come from?
What advantages can be gained in practice from the use of quantum information?
arXiv Detail & Related papers (2021-02-10T02:43:27Z) - Demonstrating the power of quantum computers, certification of highly
entangled measurements and scalable quantum nonlocality [0.0]
We demonstrate the power of state-of-the-art IBM quantum computers in correlation experiments inspired by quantum networks.
Our experiments feature up to 12 qubits and require the implementation of paradigmatic Bell-State Measurements.
arXiv Detail & Related papers (2020-09-29T13:59:49Z) - Quantum Gram-Schmidt Processes and Their Application to Efficient State
Read-out for Quantum Algorithms [87.04438831673063]
We present an efficient read-out protocol that yields the classical vector form of the generated state.
Our protocol suits the case that the output state lies in the row space of the input matrix.
One of our technical tools is an efficient quantum algorithm for performing the Gram-Schmidt orthonormal procedure.
arXiv Detail & Related papers (2020-04-14T11:05:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.