論文の概要: Towards Dense and Accurate Radar Perception Via Efficient Cross-Modal
Diffusion Model
- arxiv url: http://arxiv.org/abs/2403.08460v1
- Date: Wed, 13 Mar 2024 12:20:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-14 14:43:44.377311
- Title: Towards Dense and Accurate Radar Perception Via Efficient Cross-Modal
Diffusion Model
- Title(参考訳): クロスモーダルを用いた高密度・高精度レーダ知覚に向けて
拡散モデル
- Authors: Ruibin Zhang, Donglai Xue, Yuhan Wang, Ruixu Geng, and Fei Gao
- Abstract要約: 本稿では, クロスモーダル学習による高密度かつ高精度なミリ波レーダポイント雲構築手法を提案する。
具体的には, 2組の生レーダデータからLiDARのような点雲を予測するために, 生成モデルにおける最先端性能を有する拡散モデルを提案する。
提案手法をベンチマーク比較と実世界の実験により検証し,その優れた性能と一般化能力を実証した。
- 参考スコア(独自算出の注目度): 4.269423698485249
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Millimeter wave (mmWave) radars have attracted significant attention from
both academia and industry due to their capability to operate in extreme
weather conditions. However, they face challenges in terms of sparsity and
noise interference, which hinder their application in the field of micro aerial
vehicle (MAV) autonomous navigation. To this end, this paper proposes a novel
approach to dense and accurate mmWave radar point cloud construction via
cross-modal learning. Specifically, we introduce diffusion models, which
possess state-of-the-art performance in generative modeling, to predict
LiDAR-like point clouds from paired raw radar data. We also incorporate the
most recent diffusion model inference accelerating techniques to ensure that
the proposed method can be implemented on MAVs with limited computing
resources.We validate the proposed method through extensive benchmark
comparisons and real-world experiments, demonstrating its superior performance
and generalization ability. Code and pretrained models will be available at
https://github.com/ZJU-FAST-Lab/Radar-Diffusion.
- Abstract(参考訳): ミリ波レーダー(mmWave)は、極度の気象条件下での運用能力から、学術と産業の両方から大きな注目を集めている。
しかし、マイクロエアロビー(MAV)の自律航法分野への応用を妨げる、空間性やノイズ干渉の観点からは課題に直面している。
そこで本稿では, クロスモーダル学習による高密度かつ高精度なmmWaveレーダポイント雲構築手法を提案する。
具体的には, 2組の生レーダデータからLiDARのような点雲を予測するために, 生成モデルにおける最先端性能を有する拡散モデルを提案する。
また,提案手法が限られた計算資源を持つMAV上で実装可能であることを保証するため,近年の拡散モデル推論の高速化技術も取り入れた。
コードおよび事前トレーニングされたモデルはhttps://github.com/ZJU-FAST-Lab/Radar-Diffusion.comで利用可能になる。
関連論文リスト
- DiffSR: Learning Radar Reflectivity Synthesis via Diffusion Model from Satellite Observations [42.635670495018964]
我々はDiffSRと呼ばれる2段階拡散法を提案し、高周波の詳細と高値領域を生成する。
提案手法は, 最新技術(SOTA)の成果を達成し, 高周波の細部と高値領域を生成できることを実証する。
論文 参考訳(メタデータ) (2024-11-11T04:50:34Z) - Radar Fields: Frequency-Space Neural Scene Representations for FMCW Radar [62.51065633674272]
本稿では,アクティブレーダイメージア用に設計されたニューラルシーン再構成手法であるRadar Fieldsを紹介する。
提案手法では,暗黙的ニューラルジオメトリとリフレクタンスモデルを用いて,暗黙的な物理インフォームドセンサモデルを構築し,生のレーダ測定を直接合成する。
本研究では,密集した車両やインフラを備えた都市景観を含む,多様な屋外シナリオにおける手法の有効性を検証する。
論文 参考訳(メタデータ) (2024-05-07T20:44:48Z) - Diffusion-Based Point Cloud Super-Resolution for mmWave Radar Data [8.552647576661174]
ミリ波レーダセンサは、環境条件下では安定した性能を維持している。
レーダー点雲は比較的希薄で、巨大なゴーストポイントを含んでいる。
本稿では3次元ミリ波レーダデータに対する新しい点雲超解像法,Radar-diffusionを提案する。
論文 参考訳(メタデータ) (2024-04-09T04:41:05Z) - Echoes Beyond Points: Unleashing the Power of Raw Radar Data in
Multi-modality Fusion [74.84019379368807]
本稿では,既存のレーダ信号処理パイプラインをスキップするEchoFusionという新しい手法を提案する。
具体的には、まずBird's Eye View (BEV)クエリを生成し、次にレーダーから他のセンサーとフューズに対応するスペクトル特徴を取ります。
論文 参考訳(メタデータ) (2023-07-31T09:53:50Z) - Semantic Segmentation of Radar Detections using Convolutions on Point
Clouds [59.45414406974091]
本稿では,レーダ検出を点雲に展開する深層学習手法を提案する。
このアルゴリズムは、距離依存クラスタリングと入力点雲の事前処理により、レーダ固有の特性に適応する。
我々のネットワークは、レーダポイント雲のセマンティックセグメンテーションのタスクにおいて、PointNet++に基づく最先端のアプローチよりも優れています。
論文 参考訳(メタデータ) (2023-05-22T07:09:35Z) - RadarFormer: Lightweight and Accurate Real-Time Radar Object Detection
Model [13.214257841152033]
レーダー中心のデータセットは、レーダー知覚のためのディープラーニング技術の開発にはあまり注目されていない。
本稿では,視覚深層学習における最先端技術を活用したトランスフォーマーモデルRadarFormerを提案する。
また、チャネルチャープ時マージモジュールを導入し、精度を損なうことなく、モデルのサイズと複雑さを10倍以上に削減する。
論文 参考訳(メタデータ) (2023-04-17T17:07:35Z) - ADCNet: Learning from Raw Radar Data via Distillation [3.519713957675842]
レーダーベースのシステムは、LiDARベースのシステムよりも低コストで、悪天候に対して堅牢である。
最近の研究は、最終的なレーダー点雲の代わりに、生のレーダーデータを消費することに焦点を当てている。
我々は,信号処理パイプラインの要素を我々のネットワークに持ち込み,信号処理タスクの事前学習を行うことで,検出性能の状態を達成できることを示す。
論文 参考訳(メタデータ) (2023-03-21T13:31:15Z) - LiRaNet: End-to-End Trajectory Prediction using Spatio-Temporal Radar
Fusion [52.59664614744447]
本稿では,レーダセンサ情報と広範に使用されているライダーと高精細度(HD)マップを用いた新しい終端軌道予測手法LiRaNetを提案する。
自動車レーダーは、リッチで補完的な情報を提供し、より長い距離の車両検出と即時速度測定を可能にします。
論文 参考訳(メタデータ) (2020-10-02T00:13:00Z) - Depth Estimation from Monocular Images and Sparse Radar Data [93.70524512061318]
本稿では,ディープニューラルネットワークを用いた単眼画像とレーダ点の融合により,より正確な深度推定を実現する可能性を検討する。
レーダ測定で発生するノイズが,既存の融合法の適用を妨げている主要な理由の1つであることが判明した。
実験はnuScenesデータセット上で行われ、カメラ、レーダー、LiDARの記録を様々な場面と気象条件で記録する最初のデータセットの1つである。
論文 参考訳(メタデータ) (2020-09-30T19:01:33Z) - RadarNet: Exploiting Radar for Robust Perception of Dynamic Objects [73.80316195652493]
我々は、自動運転車の文脈における認識のためにRadarを利用する問題に取り組む。
我々は、LiDARとRadarの両方のセンサーを知覚に利用した新しいソリューションを提案する。
RadarNetと呼ばれる我々のアプローチは、ボクセルベースの早期核融合と注意に基づく後期核融合を特徴としている。
論文 参考訳(メタデータ) (2020-07-28T17:15:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。