Diffusion Models with Implicit Guidance for Medical Anomaly Detection
- URL: http://arxiv.org/abs/2403.08464v1
- Date: Wed, 13 Mar 2024 12:26:55 GMT
- Title: Diffusion Models with Implicit Guidance for Medical Anomaly Detection
- Authors: Cosmin I. Bercea and Benedikt Wiestler and Daniel Rueckert and Julia
A. Schnabel
- Abstract summary: Temporal Harmonization for Optimal Restoration (THOR) aims to preserve the integrity of healthy tissue in areas unaffected by pathology.
Relative evaluations show THOR surpasses existing diffusion-based methods in detecting and segmenting anomalies in brain MRIs and wrist X-rays.
- Score: 13.161402789616004
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Diffusion models have advanced unsupervised anomaly detection by improving
the transformation of pathological images into pseudo-healthy equivalents.
Nonetheless, standard approaches may compromise critical information during
pathology removal, leading to restorations that do not align with unaffected
regions in the original scans. Such discrepancies can inadvertently increase
false positive rates and reduce specificity, complicating radiological
evaluations. This paper introduces Temporal Harmonization for Optimal
Restoration (THOR), which refines the de-noising process by integrating
implicit guidance through temporal anomaly maps. THOR aims to preserve the
integrity of healthy tissue in areas unaffected by pathology. Comparative
evaluations show that THOR surpasses existing diffusion-based methods in
detecting and segmenting anomalies in brain MRIs and wrist X-rays. Code:
https://github.com/ci-ber/THOR_DDPM.
Related papers
- GLAD: Towards Better Reconstruction with Global and Local Adaptive Diffusion Models for Unsupervised Anomaly Detection [60.78684630040313]
Diffusion models tend to reconstruct normal counterparts of test images with certain noises added.
From the global perspective, the difficulty of reconstructing images with different anomalies is uneven.
We propose a global and local adaptive diffusion model (abbreviated to GLAD) for unsupervised anomaly detection.
arXiv Detail & Related papers (2024-06-11T17:27:23Z) - Spatial-aware Attention Generative Adversarial Network for Semi-supervised Anomaly Detection in Medical Image [63.59114880750643]
We introduce a novel Spatial-aware Attention Generative Adrialversa Network (SAGAN) for one-class semi-supervised generation of health images.
SAGAN generates high-quality health images corresponding to unlabeled data, guided by the reconstruction of normal images and restoration of pseudo-anomaly images.
Extensive experiments on three medical datasets demonstrate that the proposed SAGAN outperforms the state-of-the-art methods.
arXiv Detail & Related papers (2024-05-21T15:41:34Z) - Diffusion Models for Counterfactual Generation and Anomaly Detection in Brain Images [39.94162291765236]
We present a weakly supervised method to generate a healthy version of a diseased image and then use it to obtain a pixel-wise anomaly map.
We employ a diffusion model trained on healthy samples and combine Denoising Diffusion Probabilistic Model (DDPM) and Denoising Implicit Model (DDIM) at each step of the sampling process.
arXiv Detail & Related papers (2023-08-03T21:56:50Z) - Reversing the Abnormal: Pseudo-Healthy Generative Networks for Anomaly
Detection [8.737589725372398]
We introduce a novel unsupervised approach, called PHANES (Pseudo Healthy generative networks for ANomaly)
Our method has the capability of reversing anomalies, preserving healthy tissue and replacing anomalous regions with pseudo-healthy reconstructions.
We demonstrate the effectiveness of PHANES in detecting stroke lesions in T1w brain MRI datasets and show significant improvements over state-of-the-art (SOTA) methods.
arXiv Detail & Related papers (2023-03-15T08:54:20Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
We propose a method that reformulates the generation task of diffusion models as a patch-based estimation of healthy brain anatomy.
We evaluate our approach on data of tumors and multiple sclerosis lesions and demonstrate a relative improvement of 25.1% compared to existing baselines.
arXiv Detail & Related papers (2023-03-07T09:40:22Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
Pathological brain lesions exhibit diverse appearance in brain images.
Unsupervised anomaly detection approaches have been proposed using only normal data for training.
We show that optimization of the spatial resolution and magnitude of the noise improves the performance of different model training regimes.
arXiv Detail & Related papers (2023-01-19T21:39:38Z) - Boundary Guided Semantic Learning for Real-time COVID-19 Lung Infection
Segmentation System [69.40329819373954]
The coronavirus disease 2019 (COVID-19) continues to have a negative impact on healthcare systems around the world.
At the current stage, automatically segmenting the lung infection area from CT images is essential for the diagnosis and treatment of COVID-19.
We propose a boundary guided semantic learning network (BSNet) in this paper.
arXiv Detail & Related papers (2022-09-07T05:01:38Z) - Distance-based detection of out-of-distribution silent failures for
Covid-19 lung lesion segmentation [0.8200989595956418]
Deep learning models are not trusted in the clinical routine due to failing silently on out-of-distribution data.
We propose a lightweight OOD detection method that leverages the Mahalanobis distance in the feature space.
We validate our method across four chest CT distribution shifts and two magnetic resonance imaging applications.
arXiv Detail & Related papers (2022-08-05T15:05:23Z) - Diffusion Models for Medical Anomaly Detection [0.8999666725996974]
We present a novel weakly supervised anomaly detection method based on denoising diffusion implicit models.
Our method generates very detailed anomaly maps without the need for a complex training procedure.
arXiv Detail & Related papers (2022-03-08T12:35:07Z) - Anomaly Detection on X-Rays Using Self-Supervised Aggregation Learning [16.854288765350283]
SALAD is an end-to-end deep self-supervised methodology for anomaly detection on X-Ray images.
The proposed method is based on an optimization strategy in which a deep neural network is encouraged to represent prototypical local patterns.
Our anomaly score is then derived by measuring similarity to a weighted combination of normal prototypical patterns within a memory bank.
arXiv Detail & Related papers (2020-10-19T20:49:34Z) - Manifolds for Unsupervised Visual Anomaly Detection [79.22051549519989]
Unsupervised learning methods that don't necessarily encounter anomalies in training would be immensely useful.
We develop a novel hyperspherical Variational Auto-Encoder (VAE) via stereographic projections with a gyroplane layer.
We present state-of-the-art results on visual anomaly benchmarks in precision manufacturing and inspection, demonstrating real-world utility in industrial AI scenarios.
arXiv Detail & Related papers (2020-06-19T20:41:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.