論文の概要: MD-Dose: A diffusion model based on the Mamba for radiation dose prediction
- arxiv url: http://arxiv.org/abs/2403.08479v2
- Date: Wed, 22 Jan 2025 07:47:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-23 13:28:13.153850
- Title: MD-Dose: A diffusion model based on the Mamba for radiation dose prediction
- Title(参考訳): MD-Dose:放射線線量予測のためのMambaに基づく拡散モデル
- Authors: Linjie Fu, Xia Li, Xiuding Cai, Yingkai Wang, Xueyao Wang, Yali Shen, Yu Yao,
- Abstract要約: 胸部癌に対する放射線治療用線量分布予測のための新しい拡散モデルMD-Doseを導入する。
前処理では、MD-Doseは線量分布マップにガウスノイズを加え、純粋なノイズ画像を得る。
後向きのプロセスでは、MD-Doseはマンバに基づくノイズ予測器を使用してノイズを予測し、最終的に線量分布マップを出力する。
- 参考スコア(独自算出の注目度): 13.503046112600742
- License:
- Abstract: Radiation therapy is crucial in cancer treatment. Experienced experts typically iteratively generate high-quality dose distribution maps, forming the basis for excellent radiation therapy plans. Therefore, automated prediction of dose distribution maps is significant in expediting the treatment process and providing a better starting point for developing radiation therapy plans. With the remarkable results of diffusion models in predicting high-frequency regions of dose distribution maps, dose prediction methods based on diffusion models have been extensively studied. However, existing methods mainly utilize CNNs or Transformers as denoising networks. CNNs lack the capture of global receptive fields, resulting in suboptimal prediction performance. Transformers excel in global modeling but face quadratic complexity with image size, resulting in significant computational overhead. To tackle these challenges, we introduce a novel diffusion model, MD-Dose, based on the Mamba architecture for predicting radiation therapy dose distribution in thoracic cancer patients. In the forward process, MD-Dose adds Gaussian noise to dose distribution maps to obtain pure noise images. In the backward process, MD-Dose utilizes a noise predictor based on the Mamba to predict the noise, ultimately outputting the dose distribution maps. Furthermore, We develop a Mamba encoder to extract structural information and integrate it into the noise predictor for localizing dose regions in the planning target volume (PTV) and organs at risk (OARs). Through extensive experiments on a dataset of 300 thoracic tumor patients, we showcase the superiority of MD-Dose in various metrics and time consumption.
- Abstract(参考訳): 放射線療法はがん治療に欠かせない。
経験豊富な専門家は、通常、高品質な線量分布マップを反復的に生成し、優れた放射線治療計画の基礎を形成する。
したがって, 線量分布図の自動予測は, 治療の迅速化と放射線治療計画の立案に向けた出発点として重要である。
線量分布図の高周波領域予測における拡散モデルの顕著な結果から,拡散モデルに基づく線量予測法が広く研究されている。
しかし、既存の手法は主にCNNやTransformerをデノナイズネットワークとして利用している。
CNNは、グローバルな受信フィールドのキャプチャを欠いているため、最適以下の予測性能が得られる。
トランスフォーマーはグローバルモデリングに優れるが、画像サイズと二次的な複雑さに直面し、計算オーバーヘッドが大幅に増大する。
これらの課題に対処するために,胸部癌患者の放射線治療線量分布を予測するためのMambaアーキテクチャに基づく新しい拡散モデルMD-Doseを導入する。
前処理では、MD-Doseは線量分布マップにガウスノイズを加え、純粋なノイズ画像を得る。
後向きのプロセスでは、MD-Doseはマンバに基づくノイズ予測器を使用してノイズを予測し、最終的に線量分布マップを出力する。
さらに,Mambaエンコーダを開発し,その構造情報を抽出し,計画目標体積(PTV)およびリスク臓器(OAR)における線量領域の局所化のためのノイズ予測器に統合する。
胸部腫瘍患者300名を対象とした広範囲な実験により, MD-Doseの各種測定値と時間消費における優位性を示した。
関連論文リスト
- FDDM: Frequency-Decomposed Diffusion Model for Rectum Cancer Dose Prediction in Radiotherapy [12.025221208748308]
拡散モデルはコンピュータビジョンにおいて大きな成功をおさめ、より周波数の細かい画像を生成する。
線量マップの高周波サブバンドを改良する周波数分解拡散モデルを提案する。
高周波数サブバンドにおける粗い予測結果と基底真実との間には顕著な違いがある。
論文 参考訳(メタデータ) (2024-10-10T12:48:42Z) - SP-DiffDose: A Conditional Diffusion Model for Radiation Dose Prediction
Based on Multi-Scale Fusion of Anatomical Structures, Guided by
SwinTransformer and Projector [14.18016609082685]
本研究では,SwinTransformerとプロジェクタSP-DiffDoseに基づく線量予測拡散モデルを提案する。
解剖学的構造と線量分布マップの直接的な相関を捉えるために、SP-DiffDoseは構造エンコーダを使用して解剖学的画像から特徴を抽出する。
SP-DiffDoseは、リスクのある臓器の線量予測分布を強化するために、ネットワークの深い層でSwinTransformerを使用して、画像のさまざまなスケールの特徴をキャプチャする。
論文 参考訳(メタデータ) (2023-12-11T08:07:41Z) - Diffusion-based Radiotherapy Dose Prediction Guided by Inter-slice Aware Structure Encoding [9.908364285212764]
がん患者の放射線治療線量分布を予測する拡散モデルに基づく方法(DiffDose)を提案する。
DiffDoseは、線量分布マップを小さなノイズを徐々に加えることによって純粋なガウス雑音に変換し、ノイズ予測器を同時に訓練し、各タイミングで加算されたノイズを推定する。
逆処理では、よく訓練されたノイズ予測器を用いて、純粋なガウス雑音から複数のステップでノイズを除去し、最終的に予測された線量分布マップを出力する。
論文 参考訳(メタデータ) (2023-11-06T09:54:47Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - SMRD: SURE-based Robust MRI Reconstruction with Diffusion Models [76.43625653814911]
拡散モデルは、高い試料品質のため、MRIの再生を加速するために人気を博している。
推論時に柔軟にフォワードモデルを組み込んだまま、効果的にリッチなデータプリエントとして機能することができる。
拡散モデル(SMRD)を用いたSUREに基づくMRI再構成を導入し,テスト時の堅牢性を向上する。
論文 参考訳(メタデータ) (2023-10-03T05:05:35Z) - ArSDM: Colonoscopy Images Synthesis with Adaptive Refinement Semantic
Diffusion Models [69.9178140563928]
大腸内視鏡検査は臨床診断や治療に不可欠である。
注釈付きデータの不足は、既存の手法の有効性と一般化を制限する。
本稿では, 下流作業に有用な大腸内視鏡画像を生成するために, 適応Refinement Semantic Diffusion Model (ArSDM)を提案する。
論文 参考訳(メタデータ) (2023-09-03T07:55:46Z) - DiffDP: Radiotherapy Dose Prediction via a Diffusion Model [13.44191425264393]
がん患者の放射線線量分布を予測するための拡散型線量予測(DiffDP)モデルを提案する。
前処理では、DiffDPは小さなノイズを加えることで線量マップをガウスノイズに徐々に変換し、ノイズ予測器を訓練し、各時間ステップに付加されるノイズを予測する。
逆処理では、よく訓練されたノイズ予測器を用いて、元のガウス雑音から複数のステップでノイズを除去し、最終的に予測された線量分布マップを出力する。
論文 参考訳(メタデータ) (2023-07-19T07:25:33Z) - DoseDiff: Distance-aware Diffusion Model for Dose Prediction in Radiotherapy [7.934475806787889]
線量分布を正確に予測するための距離認識拡散モデル(DoseDiff)を提案する。
その結果,ドセディフ法は定量的性能と視覚的品質の両方の観点から,最先端の線量予測法よりも優れていた。
論文 参考訳(メタデータ) (2023-06-28T15:58:53Z) - Optimizing Sampling Patterns for Compressed Sensing MRI with Diffusion
Generative Models [75.52575380824051]
圧縮センシングマルチコイルMRIにおけるサブサンプリングパターンを最適化する学習手法を提案する。
拡散モデルとMRI計測プロセスにより得られた後部平均推定値に基づいて1段階の再構成を行う。
本手法では,効果的なサンプリングパターンの学習には5つのトレーニング画像が必要である。
論文 参考訳(メタデータ) (2023-06-05T22:09:06Z) - Reconstructing Graph Diffusion History from a Single Snapshot [87.20550495678907]
A single SnapsHot (DASH) から拡散履歴を再構築するための新しいバリセンターの定式化を提案する。
本研究では,拡散パラメータ推定のNP硬度により,拡散パラメータの推定誤差が避けられないことを証明する。
また、DITTO(Diffusion hitting Times with Optimal proposal)という効果的な解法も開発している。
論文 参考訳(メタデータ) (2023-06-01T09:39:32Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
本稿では, セグメンテーションによる異常胸部X線(CXR)識別性能を向上させるための深層学習手法を提案する。
提案手法は,CXR画像中の肺領域を局所化するための深層ニューラルネットワーク(XLSor)と,大規模CXRデータセットで事前学習した自己教師あり運動量コントラスト(MoCo)モデルのバックボーンを用いたCXR分類モデルである。
論文 参考訳(メタデータ) (2022-02-22T15:24:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。