From Weak to Strong Sound Event Labels using Adaptive Change-Point Detection and Active Learning
- URL: http://arxiv.org/abs/2403.08525v2
- Date: Mon, 26 Aug 2024 08:49:48 GMT
- Title: From Weak to Strong Sound Event Labels using Adaptive Change-Point Detection and Active Learning
- Authors: John Martinsson, Olof Mogren, Maria Sandsten, Tuomas Virtanen,
- Abstract summary: We propose an adaptive change point detection method (A-CPD) for machine guided weak label annotation of audio recording segments.
For each unlabeled audio recording, we use a prediction model to derive a probability curve used to guide annotation.
We show that it is possible to derive strong labels of high quality with a limited annotation budget, and show favorable results for A-CPD.
- Score: 11.312115846980602
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose an adaptive change point detection method (A-CPD) for machine guided weak label annotation of audio recording segments. The goal is to maximize the amount of information gained about the temporal activations of the target sounds. For each unlabeled audio recording, we use a prediction model to derive a probability curve used to guide annotation. The prediction model is initially pre-trained on available annotated sound event data with classes that are disjoint from the classes in the unlabeled dataset. The prediction model then gradually adapts to the annotations provided by the annotator in an active learning loop. We derive query segments to guide the weak label annotator towards strong labels, using change point detection on these probabilities. We show that it is possible to derive strong labels of high quality with a limited annotation budget, and show favorable results for A-CPD when compared to two baseline query segment strategies.
Related papers
- Co-training for Low Resource Scientific Natural Language Inference [65.37685198688538]
We propose a novel co-training method that assigns weights based on the training dynamics of the classifiers to the distantly supervised labels.
By assigning importance weights instead of filtering out examples based on an arbitrary threshold on the predicted confidence, we maximize the usage of automatically labeled data.
The proposed method obtains an improvement of 1.5% in Macro F1 over the distant supervision baseline, and substantial improvements over several other strong SSL baselines.
arXiv Detail & Related papers (2024-06-20T18:35:47Z) - Extracting Clean and Balanced Subset for Noisy Long-tailed Classification [66.47809135771698]
We develop a novel pseudo labeling method using class prototypes from the perspective of distribution matching.
By setting a manually-specific probability measure, we can reduce the side-effects of noisy and long-tailed data simultaneously.
Our method can extract this class-balanced subset with clean labels, which brings effective performance gains for long-tailed classification with label noise.
arXiv Detail & Related papers (2024-04-10T07:34:37Z) - Prefer to Classify: Improving Text Classifiers via Auxiliary Preference
Learning [76.43827771613127]
In this paper, we investigate task-specific preferences between pairs of input texts as a new alternative way for such auxiliary data annotation.
We propose a novel multi-task learning framework, called prefer-to-classify (P2C), which can enjoy the cooperative effect of learning both the given classification task and the auxiliary preferences.
arXiv Detail & Related papers (2023-06-08T04:04:47Z) - Learning to Detect Noisy Labels Using Model-Based Features [16.681748918518075]
We propose Selection-Enhanced Noisy label Training (SENT)
SENT does not rely on meta learning while having the flexibility of being data-driven.
It improves performance over strong baselines under the settings of self-training and label corruption.
arXiv Detail & Related papers (2022-12-28T10:12:13Z) - AdaWAC: Adaptively Weighted Augmentation Consistency Regularization for
Volumetric Medical Image Segmentation [3.609538870261841]
We propose an adaptive weighting algorithm for volumetric medical image segmentation.
AdaWAC assigns label-dense samples to supervised cross-entropy loss and label-sparse samples to consistency regularization.
We empirically demonstrate that AdaWAC not only enhances segmentation performance and sample efficiency but also improves robustness to the subpopulation shift in labels.
arXiv Detail & Related papers (2022-10-04T20:28:38Z) - Active Pointly-Supervised Instance Segmentation [106.38955769817747]
We present an economic active learning setting, named active pointly-supervised instance segmentation (APIS)
APIS starts with box-level annotations and iteratively samples a point within the box and asks if it falls on the object.
The model developed with these strategies yields consistent performance gain on the challenging MS-COCO dataset.
arXiv Detail & Related papers (2022-07-23T11:25:24Z) - Learning to Rectify for Robust Learning with Noisy Labels [25.149277009932423]
We propose warped probabilistic inference (WarPI) to achieve adaptively rectifying the training procedure for the classification network.
We evaluate WarPI on four benchmarks of robust learning with noisy labels and achieve the new state-of-the-art under variant noise types.
arXiv Detail & Related papers (2021-11-08T02:25:50Z) - Prototypical Classifier for Robust Class-Imbalanced Learning [64.96088324684683]
We propose textitPrototypical, which does not require fitting additional parameters given the embedding network.
Prototypical produces balanced and comparable predictions for all classes even though the training set is class-imbalanced.
We test our method on CIFAR-10LT, CIFAR-100LT and Webvision datasets, observing that Prototypical obtains substaintial improvements compared with state of the arts.
arXiv Detail & Related papers (2021-10-22T01:55:01Z) - Towards Robustness to Label Noise in Text Classification via Noise
Modeling [7.863638253070439]
Large datasets in NLP suffer from noisy labels, due to erroneous automatic and human annotation procedures.
We study the problem of text classification with label noise, and aim to capture this noise through an auxiliary noise model over the classifier.
arXiv Detail & Related papers (2021-01-27T05:41:57Z) - Meta Transition Adaptation for Robust Deep Learning with Noisy Labels [61.8970957519509]
This study proposes a new meta-transition-learning strategy for the task.
Specifically, through the sound guidance of a small set of meta data with clean labels, the noise transition matrix and the classifier parameters can be mutually ameliorated.
Our method can more accurately extract the transition matrix, naturally following its more robust performance than prior arts.
arXiv Detail & Related papers (2020-06-10T07:27:25Z) - Active Learning for Sound Event Detection [18.750572243562576]
This paper proposes an active learning system for sound event detection (SED)
It aims at maximizing the accuracy of a learned SED model with limited annotation effort.
Remarkably, the required annotation effort can be greatly reduced on the dataset where target sound events are rare.
arXiv Detail & Related papers (2020-02-12T14:46:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.