PRAGO: Differentiable Multi-View Pose Optimization From Objectness Detections
- URL: http://arxiv.org/abs/2403.08586v2
- Date: Fri, 15 Mar 2024 17:23:21 GMT
- Title: PRAGO: Differentiable Multi-View Pose Optimization From Objectness Detections
- Authors: Matteo Taiana, Matteo Toso, Stuart James, Alessio Del Bue,
- Abstract summary: We propose a Pose-refined Rotation Averaging Graph Optimization (PRAGO) method for differentiable estimating camera poses from a set of images.
Our method reconstructs the rotational pose, and in turn, the absolute pose, in a differentiable manner benefiting from the optimization of a sequence of geometrical tasks.
We show that PRAGO is able to outperform non-differentiable solvers on small and sparse scenes extracted from 7-Scenes achieving a relative improvement of 21% for rotations while achieving similar translation estimates.
- Score: 19.211193336526346
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Robustly estimating camera poses from a set of images is a fundamental task which remains challenging for differentiable methods, especially in the case of small and sparse camera pose graphs. To overcome this challenge, we propose Pose-refined Rotation Averaging Graph Optimization (PRAGO). From a set of objectness detections on unordered images, our method reconstructs the rotational pose, and in turn, the absolute pose, in a differentiable manner benefiting from the optimization of a sequence of geometrical tasks. We show how our objectness pose-refinement module in PRAGO is able to refine the inherent ambiguities in pairwise relative pose estimation without removing edges and avoiding making early decisions on the viability of graph edges. PRAGO then refines the absolute rotations through iterative graph construction, reweighting the graph edges to compute the final rotational pose, which can be converted into absolute poses using translation averaging. We show that PRAGO is able to outperform non-differentiable solvers on small and sparse scenes extracted from 7-Scenes achieving a relative improvement of 21% for rotations while achieving similar translation estimates.
Related papers
- VICAN: Very Efficient Calibration Algorithm for Large Camera Networks [49.17165360280794]
We introduce a novel methodology that extends Pose Graph Optimization techniques.
We consider the bipartite graph encompassing cameras, object poses evolving dynamically, and camera-object relative transformations at each time step.
Our framework retains compatibility with traditional PGO solvers, but its efficacy benefits from a custom-tailored optimization scheme.
arXiv Detail & Related papers (2024-03-25T17:47:03Z) - DVMNet: Computing Relative Pose for Unseen Objects Beyond Hypotheses [59.51874686414509]
Current approaches approximate the continuous pose representation with a large number of discrete pose hypotheses.
We present a Deep Voxel Matching Network (DVMNet) that eliminates the need for pose hypotheses and computes the relative object pose in a single pass.
Our method delivers more accurate relative pose estimates for novel objects at a lower computational cost compared to state-of-the-art methods.
arXiv Detail & Related papers (2024-03-20T15:41:32Z) - FAR: Flexible, Accurate and Robust 6DoF Relative Camera Pose Estimation [30.710296843150832]
Estimating relative camera poses between images has been a central problem in computer vision.
We show how to combine the best of both methods; our approach yields results that are both precise and robust.
A comprehensive analysis supports our design choices and demonstrates that our method adapts flexibly to various feature extractors and correspondence estimators.
arXiv Detail & Related papers (2024-03-05T18:59:51Z) - iComMa: Inverting 3D Gaussian Splatting for Camera Pose Estimation via Comparing and Matching [14.737266480464156]
We present a method named iComMa to address the 6D camera pose estimation problem in computer vision.
We propose an efficient method for accurate camera pose estimation by inverting 3D Gaussian Splatting (3DGS)
arXiv Detail & Related papers (2023-12-14T15:31:33Z) - RelPose++: Recovering 6D Poses from Sparse-view Observations [66.6922660401558]
We address the task of estimating 6D camera poses from sparse-view image sets (2-8 images)
We build on the recent RelPose framework which learns a network that infers distributions over relative rotations over image pairs.
Our final system results in large improvements in 6D pose prediction over prior art on both seen and unseen object categories.
arXiv Detail & Related papers (2023-05-08T17:59:58Z) - PoseMatcher: One-shot 6D Object Pose Estimation by Deep Feature Matching [51.142988196855484]
We propose PoseMatcher, an accurate model free one-shot object pose estimator.
We create a new training pipeline for object to image matching based on a three-view system.
To enable PoseMatcher to attend to distinct input modalities, an image and a pointcloud, we introduce IO-Layer.
arXiv Detail & Related papers (2023-04-03T21:14:59Z) - E-Graph: Minimal Solution for Rigid Rotation with Extensibility Graphs [61.552125054227595]
A new minimal solution is proposed to solve relative rotation estimation between two images without overlapping areas.
Based on E-Graph, the rotation estimation problem becomes simpler and more elegant.
We embed our rotation estimation strategy into a complete camera tracking and mapping system which obtains 6-DoF camera poses and a dense 3D mesh model.
arXiv Detail & Related papers (2022-07-20T16:11:48Z) - PoserNet: Refining Relative Camera Poses Exploiting Object Detections [14.611595909419297]
We use objectness regions to guide the pose estimation problem rather than explicit semantic object detections.
We propose Pose Refiner Network (PoserNet) a light-weight Graph Network to refine the approximate pair-wise relative camera poses.
We evaluate on the 7-Scenes dataset across varied sizes of graphs and show how this process can be beneficial to optimisation-based Motion Averaging algorithms.
arXiv Detail & Related papers (2022-07-19T17:58:33Z) - RNNPose: Recurrent 6-DoF Object Pose Refinement with Robust
Correspondence Field Estimation and Pose Optimization [46.144194562841435]
We propose a framework based on a recurrent neural network (RNN) for object pose refinement.
The problem is formulated as a non-linear least squares problem based on the estimated correspondence field.
The correspondence field estimation and pose refinement are conducted alternatively in each iteration to recover accurate object poses.
arXiv Detail & Related papers (2022-03-24T06:24:55Z) - Solving Viewing Graph Optimization for Simultaneous Position and
Rotation Registration [6.789370732159177]
Solving the viewing graph is an essential step in a Structure-from-Motion procedure.
In this paper an iterative method is proposed that overcomes these issues.
Also a method is proposed which obtains the rotations and positions simultaneously.
arXiv Detail & Related papers (2021-08-29T16:52:18Z) - I Like to Move It: 6D Pose Estimation as an Action Decision Process [53.63776807432945]
Object pose estimation is an integral part of robot vision and AR.
Previous 6D pose retrieval pipelines treat the problem either as a regression task or discretize the pose space to classify.
We change this paradigm and reformulate the problem as an action decision process where an initial pose is updated in incremental discrete steps.
A neural network estimates likely moves from a single RGB image iteratively and determines so an acceptable final pose.
arXiv Detail & Related papers (2020-09-26T20:05:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.