論文の概要: Scaling Up Dynamic Human-Scene Interaction Modeling
- arxiv url: http://arxiv.org/abs/2403.08629v1
- Date: Wed, 13 Mar 2024 15:45:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-14 13:38:19.872170
- Title: Scaling Up Dynamic Human-Scene Interaction Modeling
- Title(参考訳): 動的ヒューマンシーンインタラクションモデリングのスケールアップ
- Authors: Nan Jiang, Zhiyuan Zhang, Hongjie Li, Xiaoxuan Ma, Zan Wang, Yixin
Chen, Tengyu Liu, Yixin Zhu, Siyuan Huang
- Abstract要約: TRUMANSは、現在利用可能な最も包括的なモーションキャプチャーHSIデータセットである。
人体全体の動きや部分レベルの物体の動きを複雑に捉えます。
本研究では,任意の長さのHSI配列を効率的に生成する拡散型自己回帰モデルを提案する。
- 参考スコア(独自算出の注目度): 60.21472701182632
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Confronting the challenges of data scarcity and advanced motion synthesis in
human-scene interaction modeling, we introduce the TRUMANS dataset alongside a
novel HSI motion synthesis method. TRUMANS stands as the most comprehensive
motion-captured HSI dataset currently available, encompassing over 15 hours of
human interactions across 100 indoor scenes. It intricately captures whole-body
human motions and part-level object dynamics, focusing on the realism of
contact. This dataset is further scaled up by transforming physical
environments into exact virtual models and applying extensive augmentations to
appearance and motion for both humans and objects while maintaining interaction
fidelity. Utilizing TRUMANS, we devise a diffusion-based autoregressive model
that efficiently generates HSI sequences of any length, taking into account
both scene context and intended actions. In experiments, our approach shows
remarkable zero-shot generalizability on a range of 3D scene datasets (e.g.,
PROX, Replica, ScanNet, ScanNet++), producing motions that closely mimic
original motion-captured sequences, as confirmed by quantitative experiments
and human studies.
- Abstract(参考訳): ヒューマン・シーン・インタラクション・モデリングにおけるデータ不足と高度なモーション・シンセサイザーの課題に先立ち、新しいHSIモーション・シンセサイザー法とともにTRUMANSデータセットを導入する。
TRUMANSは、現在利用可能な最も包括的なモーションキャプチャーされたHSIデータセットであり、100の屋内シーンで15時間以上の人間のインタラクションを含んでいる。
人体全体の動きと部分レベルの物体の動きを複雑に捉え、接触のリアリズムに焦点をあてる。
このデータセットは、物理的環境を正確な仮想モデルに変換し、人間と物体の両方の外観と動きに広範囲に拡張し、相互作用の忠実さを維持しながら拡張することでさらにスケールアップされる。
TRUMANSを用いて,任意の長さのHSIシーケンスを効率よく生成する拡散型自己回帰モデルを提案し,シーンコンテキストと意図した動作を考慮に入れた。
実験では,3次元シーンのデータセット(例: PROX, Replica, ScanNet, ScanNet++)に対して,従来のモーションキャプチャーシーケンスを忠実に模倣した動きを生成できる,顕著なゼロショット一般化性を示した。
関連論文リスト
- EgoGaussian: Dynamic Scene Understanding from Egocentric Video with 3D Gaussian Splatting [95.44545809256473]
エゴガウスアン(EgoGaussian)は、3Dシーンを同時に再構築し、RGBエゴセントリックな入力のみから3Dオブジェクトの動きを動的に追跡する手法である。
動的オブジェクトと背景再構築の品質の両面で,最先端技術と比較して大きな改善が見られた。
論文 参考訳(メタデータ) (2024-06-28T10:39:36Z) - Shape Conditioned Human Motion Generation with Diffusion Model [0.0]
本研究では,メッシュ形式での運動系列生成を可能にする形状条件付き運動拡散モデル(SMD)を提案する。
また、スペクトル領域内の時間的依存関係を活用するためのスペクトル・テンポラルオートエンコーダ(STAE)を提案する。
論文 参考訳(メタデータ) (2024-05-10T19:06:41Z) - Revisit Human-Scene Interaction via Space Occupancy [55.67657438543008]
HSI(Human-Scene Interaction)の生成は、さまざまな下流タスクに不可欠な課題である。
本研究では,シーンとのインタラクションが,抽象的な物理的視点からシーンの空間占有と本質的に相互作用していることを論じる。
純粋な動きシーケンスを、見えないシーン占有と相互作用する人間の記録として扱うことで、動きのみのデータを大規模にペア化された人間-占有相互作用データベースに集約することができる。
論文 参考訳(メタデータ) (2023-12-05T12:03:00Z) - ReMoS: 3D Motion-Conditioned Reaction Synthesis for Two-Person Interactions [66.87211993793807]
本稿では,2人のインタラクションシナリオにおいて,人の全身運動を合成する拡散モデルReMoSを提案する。
ペアダンス,忍術,キックボクシング,アクロバティックといった2人のシナリオでReMoSを実証する。
また,全身動作と指の動きを含む2人のインタラクションに対してReMoCapデータセットを寄贈した。
論文 参考訳(メタデータ) (2023-11-28T18:59:52Z) - Object Motion Guided Human Motion Synthesis [22.08240141115053]
大規模物体の操作におけるフルボディ人体動作合成の問題点について検討する。
条件付き拡散フレームワークであるOMOMO(Object Motion Guided Human Motion synthesis)を提案する。
我々は、操作対象物にスマートフォンを装着するだけで、全身の人間の操作動作をキャプチャする新しいシステムを開発した。
論文 参考訳(メタデータ) (2023-09-28T08:22:00Z) - NIFTY: Neural Object Interaction Fields for Guided Human Motion
Synthesis [21.650091018774972]
我々は、特定の物体に付随する神経相互作用場を作成し、人間のポーズを入力として与えられた有効な相互作用多様体までの距離を出力する。
この相互作用場は、対象条件付きヒトの運動拡散モデルのサンプリングを導く。
いくつかの物体で座ったり持ち上げたりするための現実的な動きを合成し、動きの質や動作完了の成功の観点から、代替のアプローチよりも優れています。
論文 参考訳(メタデータ) (2023-07-14T17:59:38Z) - Task-Oriented Human-Object Interactions Generation with Implicit Neural
Representations [61.659439423703155]
TOHO: 命令型ニューラル表現を用いたタスク指向型ヒューマンオブジェクトインタラクション生成
本手法は時間座標のみでパラメータ化される連続運動を生成する。
この研究は、一般的なヒューマン・シーンの相互作用シミュレーションに向けて一歩前進する。
論文 参考訳(メタデータ) (2023-03-23T09:31:56Z) - HSPACE: Synthetic Parametric Humans Animated in Complex Environments [67.8628917474705]
我々は、複雑な屋内および屋外環境に置かれたアニメーション人間による大規模な写真リアルデータセット、Human-SPACEを構築した。
年齢、性別、比率、民族性の異なる数百の個人と数百の動きとシーンを組み合わせて、100万フレームを超える最初のデータセットを生成します。
アセットは大規模に自動生成され、既存のリアルタイムレンダリングやゲームエンジンと互換性がある。
論文 参考訳(メタデータ) (2021-12-23T22:27:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。