Review of Generative AI Methods in Cybersecurity
- URL: http://arxiv.org/abs/2403.08701v2
- Date: Tue, 19 Mar 2024 15:21:20 GMT
- Title: Review of Generative AI Methods in Cybersecurity
- Authors: Yagmur Yigit, William J Buchanan, Madjid G Tehrani, Leandros Maglaras,
- Abstract summary: This paper provides a comprehensive overview of the current state-of-the-art deployments of Generative AI (GenAI)
It covers assaults, jailbreaking, and applications of prompt injection and reverse psychology.
It also provides the various applications of GenAI in cybercrimes, such as automated hacking, phishing emails, social engineering, reverse cryptography, creating attack payloads, and creating malware.
- Score: 0.6990493129893112
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Over the last decade, Artificial Intelligence (AI) has become increasingly popular, especially with the use of chatbots such as ChatGPT, Gemini, and DALL-E. With this rise, large language models (LLMs) and Generative AI (GenAI) have also become more prevalent in everyday use. These advancements strengthen cybersecurity's defensive posture and open up new attack avenues for adversaries as well. This paper provides a comprehensive overview of the current state-of-the-art deployments of GenAI, covering assaults, jailbreaking, and applications of prompt injection and reverse psychology. This paper also provides the various applications of GenAI in cybercrimes, such as automated hacking, phishing emails, social engineering, reverse cryptography, creating attack payloads, and creating malware. GenAI can significantly improve the automation of defensive cyber security processes through strategies such as dataset construction, safe code development, threat intelligence, defensive measures, reporting, and cyberattack detection. In this study, we suggest that future research should focus on developing robust ethical norms and innovative defense mechanisms to address the current issues that GenAI creates and to also further encourage an impartial approach to its future application in cybersecurity. Moreover, we underscore the importance of interdisciplinary approaches further to bridge the gap between scientific developments and ethical considerations.
Related papers
- Attack Atlas: A Practitioner's Perspective on Challenges and Pitfalls in Red Teaming GenAI [52.138044013005]
generative AI, particularly large language models (LLMs), become increasingly integrated into production applications.
New attack surfaces and vulnerabilities emerge and put a focus on adversarial threats in natural language and multi-modal systems.
Red-teaming has gained importance in proactively identifying weaknesses in these systems, while blue-teaming works to protect against such adversarial attacks.
This work aims to bridge the gap between academic insights and practical security measures for the protection of generative AI systems.
arXiv Detail & Related papers (2024-09-23T10:18:10Z) - Is Generative AI the Next Tactical Cyber Weapon For Threat Actors? Unforeseen Implications of AI Generated Cyber Attacks [0.0]
This paper delves into the escalating threat posed by the misuse of AI, specifically through the use of Large Language Models (LLMs)
Through a series of controlled experiments, the paper demonstrates how these models can be manipulated to bypass ethical and privacy safeguards to effectively generate cyber attacks.
We also introduce Occupy AI, a customized, finetuned LLM specifically engineered to automate and execute cyberattacks.
arXiv Detail & Related papers (2024-08-23T02:56:13Z) - Artificial Intelligence as the New Hacker: Developing Agents for Offensive Security [0.0]
This paper explores the integration of Artificial Intelligence (AI) into offensive cybersecurity.
It develops an autonomous AI agent, ReaperAI, designed to simulate and execute cyberattacks.
ReaperAI demonstrates the potential to identify, exploit, and analyze security vulnerabilities autonomously.
arXiv Detail & Related papers (2024-05-09T18:15:12Z) - Towards more Practical Threat Models in Artificial Intelligence Security [66.67624011455423]
Recent works have identified a gap between research and practice in artificial intelligence security.
We revisit the threat models of the six most studied attacks in AI security research and match them to AI usage in practice.
arXiv Detail & Related papers (2023-11-16T16:09:44Z) - Decoding the Threat Landscape : ChatGPT, FraudGPT, and WormGPT in Social Engineering Attacks [0.0]
Generative AI models have revolutionized the field of cyberattacks, empowering malicious actors to craft convincing and personalized phishing lures.
These models, ChatGPT, FraudGPT, and WormGPT, have augmented existing threats and ushered in new dimensions of risk.
To counter these threats, we outline a range of strategies, including traditional security measures, AI-powered security solutions, and collaborative approaches in cybersecurity.
arXiv Detail & Related papers (2023-10-09T10:31:04Z) - Identifying and Mitigating the Security Risks of Generative AI [179.2384121957896]
This paper reports the findings of a workshop held at Google on the dual-use dilemma posed by GenAI.
GenAI can be used just as well by attackers to generate new attacks and increase the velocity and efficacy of existing attacks.
We discuss short-term and long-term goals for the community on this topic.
arXiv Detail & Related papers (2023-08-28T18:51:09Z) - From ChatGPT to ThreatGPT: Impact of Generative AI in Cybersecurity and
Privacy [0.0]
This research paper highlights the limitations, challenges, potential risks, and opportunities of GenAI in the domain of cybersecurity and privacy.
The paper investigates how cyber offenders can use the GenAI tools in developing cyber attacks.
We will also discuss the social, legal, and ethical implications of ChatGPT.
arXiv Detail & Related papers (2023-07-03T00:36:57Z) - Impacts and Risk of Generative AI Technology on Cyber Defense [0.0]
We propose leveraging the Cyber Kill Chain (CKC) to understand the lifecycle of cyberattacks.
This paper aims to provide a comprehensive analysis of the risk areas introduced by the offensive use of GenAI techniques.
We also analyze the strategies employed by threat actors, highlighting the implications for cyber defense.
arXiv Detail & Related papers (2023-06-22T16:51:41Z) - Graph Mining for Cybersecurity: A Survey [61.505995908021525]
The explosive growth of cyber attacks nowadays, such as malware, spam, and intrusions, caused severe consequences on society.
Traditional Machine Learning (ML) based methods are extensively used in detecting cyber threats, but they hardly model the correlations between real-world cyber entities.
With the proliferation of graph mining techniques, many researchers investigated these techniques for capturing correlations between cyber entities and achieving high performance.
arXiv Detail & Related papers (2023-04-02T08:43:03Z) - Proceedings of the Artificial Intelligence for Cyber Security (AICS)
Workshop at AAAI 2022 [55.573187938617636]
The workshop will focus on the application of AI to problems in cyber security.
Cyber systems generate large volumes of data, utilizing this effectively is beyond human capabilities.
arXiv Detail & Related papers (2022-02-28T18:27:41Z) - Adversarial Machine Learning Attacks and Defense Methods in the Cyber
Security Domain [58.30296637276011]
This paper summarizes the latest research on adversarial attacks against security solutions based on machine learning techniques.
It is the first to discuss the unique challenges of implementing end-to-end adversarial attacks in the cyber security domain.
arXiv Detail & Related papers (2020-07-05T18:22:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.