Impacts and Risk of Generative AI Technology on Cyber Defense
- URL: http://arxiv.org/abs/2306.13033v1
- Date: Thu, 22 Jun 2023 16:51:41 GMT
- Title: Impacts and Risk of Generative AI Technology on Cyber Defense
- Authors: Subash Neupane, Ivan A. Fernandez, Sudip Mittal, Shahram Rahimi
- Abstract summary: We propose leveraging the Cyber Kill Chain (CKC) to understand the lifecycle of cyberattacks.
This paper aims to provide a comprehensive analysis of the risk areas introduced by the offensive use of GenAI techniques.
We also analyze the strategies employed by threat actors, highlighting the implications for cyber defense.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generative Artificial Intelligence (GenAI) has emerged as a powerful
technology capable of autonomously producing highly realistic content in
various domains, such as text, images, audio, and videos. With its potential
for positive applications in creative arts, content generation, virtual
assistants, and data synthesis, GenAI has garnered significant attention and
adoption. However, the increasing adoption of GenAI raises concerns about its
potential misuse for crafting convincing phishing emails, generating
disinformation through deepfake videos, and spreading misinformation via
authentic-looking social media posts, posing a new set of challenges and risks
in the realm of cybersecurity. To combat the threats posed by GenAI, we propose
leveraging the Cyber Kill Chain (CKC) to understand the lifecycle of
cyberattacks, as a foundational model for cyber defense. This paper aims to
provide a comprehensive analysis of the risk areas introduced by the offensive
use of GenAI techniques in each phase of the CKC framework. We also analyze the
strategies employed by threat actors and examine their utilization throughout
different phases of the CKC, highlighting the implications for cyber defense.
Additionally, we propose GenAI-enabled defense strategies that are both
attack-aware and adaptive. These strategies encompass various techniques such
as detection, deception, and adversarial training, among others, aiming to
effectively mitigate the risks posed by GenAI-induced cyber threats.
Related papers
- Is Generative AI the Next Tactical Cyber Weapon For Threat Actors? Unforeseen Implications of AI Generated Cyber Attacks [0.0]
This paper delves into the escalating threat posed by the misuse of AI, specifically through the use of Large Language Models (LLMs)
Through a series of controlled experiments, the paper demonstrates how these models can be manipulated to bypass ethical and privacy safeguards to effectively generate cyber attacks.
We also introduce Occupy AI, a customized, finetuned LLM specifically engineered to automate and execute cyberattacks.
arXiv Detail & Related papers (2024-08-23T02:56:13Z) - Review of Generative AI Methods in Cybersecurity [0.6990493129893112]
This paper provides a comprehensive overview of the current state-of-the-art deployments of Generative AI (GenAI)
It covers assaults, jailbreaking, and applications of prompt injection and reverse psychology.
It also provides the various applications of GenAI in cybercrimes, such as automated hacking, phishing emails, social engineering, reverse cryptography, creating attack payloads, and creating malware.
arXiv Detail & Related papers (2024-03-13T17:05:05Z) - Deepfakes, Misinformation, and Disinformation in the Era of Frontier AI, Generative AI, and Large AI Models [7.835719708227145]
Deepfakes and the spread of m/disinformation have emerged as formidable threats to the integrity of information ecosystems worldwide.
We highlight the mechanisms through which generative AI based on large models (LM-based GenAI) craft seemingly convincing yet fabricated contents.
We introduce an integrated framework that combines advanced detection algorithms, cross-platform collaboration, and policy-driven initiatives.
arXiv Detail & Related papers (2023-11-29T06:47:58Z) - Decoding the Threat Landscape : ChatGPT, FraudGPT, and WormGPT in Social Engineering Attacks [0.0]
Generative AI models have revolutionized the field of cyberattacks, empowering malicious actors to craft convincing and personalized phishing lures.
These models, ChatGPT, FraudGPT, and WormGPT, have augmented existing threats and ushered in new dimensions of risk.
To counter these threats, we outline a range of strategies, including traditional security measures, AI-powered security solutions, and collaborative approaches in cybersecurity.
arXiv Detail & Related papers (2023-10-09T10:31:04Z) - Identifying and Mitigating the Security Risks of Generative AI [179.2384121957896]
This paper reports the findings of a workshop held at Google on the dual-use dilemma posed by GenAI.
GenAI can be used just as well by attackers to generate new attacks and increase the velocity and efficacy of existing attacks.
We discuss short-term and long-term goals for the community on this topic.
arXiv Detail & Related papers (2023-08-28T18:51:09Z) - From ChatGPT to ThreatGPT: Impact of Generative AI in Cybersecurity and
Privacy [0.0]
This research paper highlights the limitations, challenges, potential risks, and opportunities of GenAI in the domain of cybersecurity and privacy.
The paper investigates how cyber offenders can use the GenAI tools in developing cyber attacks.
We will also discuss the social, legal, and ethical implications of ChatGPT.
arXiv Detail & Related papers (2023-07-03T00:36:57Z) - Graph Mining for Cybersecurity: A Survey [61.505995908021525]
The explosive growth of cyber attacks nowadays, such as malware, spam, and intrusions, caused severe consequences on society.
Traditional Machine Learning (ML) based methods are extensively used in detecting cyber threats, but they hardly model the correlations between real-world cyber entities.
With the proliferation of graph mining techniques, many researchers investigated these techniques for capturing correlations between cyber entities and achieving high performance.
arXiv Detail & Related papers (2023-04-02T08:43:03Z) - Towards Automated Classification of Attackers' TTPs by combining NLP
with ML Techniques [77.34726150561087]
We evaluate and compare different Natural Language Processing (NLP) and machine learning techniques used for security information extraction in research.
Based on our investigations we propose a data processing pipeline that automatically classifies unstructured text according to attackers' tactics and techniques.
arXiv Detail & Related papers (2022-07-18T09:59:21Z) - The Feasibility and Inevitability of Stealth Attacks [63.14766152741211]
We study new adversarial perturbations that enable an attacker to gain control over decisions in generic Artificial Intelligence systems.
In contrast to adversarial data modification, the attack mechanism we consider here involves alterations to the AI system itself.
arXiv Detail & Related papers (2021-06-26T10:50:07Z) - A System for Automated Open-Source Threat Intelligence Gathering and
Management [53.65687495231605]
SecurityKG is a system for automated OSCTI gathering and management.
It uses a combination of AI and NLP techniques to extract high-fidelity knowledge about threat behaviors.
arXiv Detail & Related papers (2021-01-19T18:31:35Z) - Adversarial Machine Learning Attacks and Defense Methods in the Cyber
Security Domain [58.30296637276011]
This paper summarizes the latest research on adversarial attacks against security solutions based on machine learning techniques.
It is the first to discuss the unique challenges of implementing end-to-end adversarial attacks in the cyber security domain.
arXiv Detail & Related papers (2020-07-05T18:22:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.