論文の概要: Improving Acoustic Word Embeddings through Correspondence Training of
Self-supervised Speech Representations
- arxiv url: http://arxiv.org/abs/2403.08738v1
- Date: Wed, 13 Mar 2024 17:42:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-14 13:07:08.665896
- Title: Improving Acoustic Word Embeddings through Correspondence Training of
Self-supervised Speech Representations
- Title(参考訳): 対応学習による音響単語埋め込みの改善
自己教師型音声表現
- Authors: Amit Meghanani and Thomas Hain
- Abstract要約: 自己教師付き学習(SSL)に基づく音声モデルから得られた表現は、多くの下流タスクにおいてMFCCを上回っている。
HuBERTベースのCAEモデルは、すべての言語で単語識別の最良の結果を得る。
1つのソース言語でトレーニングし、ターゲット言語でテストする場合、MFCCベースのCAEモデルよりも優れています。
- 参考スコア(独自算出の注目度): 23.56580783289533
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Acoustic word embeddings (AWEs) are vector representations of spoken words.
An effective method for obtaining AWEs is the Correspondence Auto-Encoder
(CAE). In the past, the CAE method has been associated with traditional MFCC
features. Representations obtained from self-supervised learning (SSL)-based
speech models such as HuBERT, Wav2vec2, etc., are outperforming MFCC in many
downstream tasks. However, they have not been well studied in the context of
learning AWEs. This work explores the effectiveness of CAE with SSL-based
speech representations to obtain improved AWEs. Additionally, the capabilities
of SSL-based speech models are explored in cross-lingual scenarios for
obtaining AWEs. Experiments are conducted on five languages: Polish,
Portuguese, Spanish, French, and English. HuBERT-based CAE model achieves the
best results for word discrimination in all languages, despite Hu-BERT being
pre-trained on English only. Also, the HuBERT-based CAE model works well in
cross-lingual settings. It outperforms MFCC-based CAE models trained on the
target languages when trained on one source language and tested on target
languages.
- Abstract(参考訳): 音響単語埋め込み(AWEs)は、音声のベクトル表現である。
AWEsを得るための効果的な方法は、対応オートエンコーダ(CAE)である。
過去には、CAE法は従来のMFCCの特徴と関連付けられてきた。
HuBERTやWav2vec2といった自己教師型学習(SSL)ベースの音声モデルから得られた表現は、多くの下流タスクにおいてMFCCを上回っている。
しかし、これらはAWEの学習の文脈ではあまり研究されていない。
本研究は、改良されたAWEを得るために、SSLベースの音声表現を用いたCAEの有効性について検討する。
さらに、SSLベースの音声モデルの能力は、AWEを得るための言語横断シナリオで探索される。
実験はポーランド語、ポルトガル語、スペイン語、フランス語、英語の5言語で行われる。
HuBERTベースのCAEモデルは、Hu-BERTが英語のみで事前訓練されているにもかかわらず、すべての言語で単語識別の最良の結果を得る。
また、HuBERTベースのCAEモデルは、言語間設定でうまく機能する。
1つのソース言語でトレーニングし、ターゲット言語でテストする場合、MFCCベースのCAEモデルよりも優れています。
関連論文リスト
- Mispronunciation detection using self-supervised speech representations [10.010024759851142]
本稿では,第2言語学習者の誤発音検出作業におけるSSLモデルの利用について検討する。
そこで本研究では,1)母国英語データを用いた音声認識モデルの訓練,2)非母国英語データを用いた目標タスクのためのモデルを直接訓練する,という2つのダウンストリームアプローチを比較した。
論文 参考訳(メタデータ) (2023-07-30T21:20:58Z) - Learning Cross-lingual Visual Speech Representations [108.68531445641769]
言語横断的な自己監督型視覚表現学習は、ここ数年、研究トピックとして成長している。
我々は最近提案したRAVEn(Raw Audio-Visual Speechs)フレームワークを用いて,未ラベルデータを用いた音声-視覚モデルの事前学習を行う。
1)データ量が多いマルチ言語モデルはモノリンガルモデルよりも優れているが、データの量を維持すると、モノリンガルモデルの性能が向上する傾向にある。
論文 参考訳(メタデータ) (2023-03-14T17:05:08Z) - Improving Massively Multilingual ASR With Auxiliary CTC Objectives [40.10307386370194]
FLEURSは102言語によるオープンASRベンチマークである。
我々は,最近のコネクショニスト時間分類(CTC)研究から着想を得た手法を考察し,モデルが多数の言語を扱えるようにした。
コンバータアーキテクチャを用いた自己教師型モデルを用いた最先端システムでは,相対28.4%CERによるFLEURSの先行研究よりも改善されている。
論文 参考訳(メタデータ) (2023-02-24T18:59:51Z) - M-SpeechCLIP: Leveraging Large-Scale, Pre-Trained Models for
Multilingual Speech to Image Retrieval [56.49878599920353]
本研究は,多言語画像音声検索におけるCLIPとHuBERTの大規模,英語のみの事前学習モデル(CLIPとHuBERT)の利用について検討する。
非英語画像音声検索では、各言語毎に個別のモデルを訓練する場合と、3言語すべてで音声を処理する1つのモデルの両方において、最先端のパフォーマンスを幅広いマージンで上回ります。
論文 参考訳(メタデータ) (2022-11-02T14:54:45Z) - Bridging the Gap between Language Models and Cross-Lingual Sequence
Labeling [101.74165219364264]
大規模言語間事前学習言語モデル (xPLM) は、言語間シーケンスラベリングタスクにおいて有効であることを示す。
大きな成功にもかかわらず、事前学習と微調整の段階の間には訓練対象のギャップがあるという経験的観察を描いている。
本稿では,まず,言語間インフォーマティブ・スパン・マスキング(CLISM)と呼ばれるxSLのための事前学習タスクを設計し,目的のギャップを解消する。
第2に、コントラスト学習を利用して入力並列表現間の一貫性を促進するContrAstive-Consistency Regularization (CACR)を提案する。
論文 参考訳(メタデータ) (2022-04-11T15:55:20Z) - Automatic Pronunciation Assessment using Self-Supervised Speech
Representation Learning [13.391307807956673]
自己教師付き学習(SSL)モデルに基づく新しい発音評価手法を提案する。
提案手法は,英単語学習者の英語発音に適応するために,事前学習したSSLモデルを接続型時間分類で微調整する。
提案手法は,韓国のESL学習者とSpeechocean762のデータセットに基づいて,ピアソン相関係数を用いてベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-04-08T06:13:55Z) - Mandarin-English Code-switching Speech Recognition with Self-supervised
Speech Representation Models [55.82292352607321]
コードスイッチング(英: Code-switching, CS)は、複数の言語が文内で使用される日常会話において一般的である。
本稿では、最近成功した自己教師付き学習(SSL)手法を用いて、CSを使わずに多くのラベルなし音声データを活用する。
論文 参考訳(メタデータ) (2021-10-07T14:43:35Z) - Wav-BERT: Cooperative Acoustic and Linguistic Representation Learning
for Low-Resource Speech Recognition [159.9312272042253]
Wav-BERTは、協調的な音響および言語表現学習法である。
我々は、事前訓練された音響モデル(wav2vec 2.0)と言語モデル(BERT)をエンドツーエンドのトレーニング可能なフレームワークに統合する。
論文 参考訳(メタデータ) (2021-09-19T16:39:22Z) - A comparison of self-supervised speech representations as input features
for unsupervised acoustic word embeddings [32.59716743279858]
私たちは、短い時間枠レベルで表現学習を見ます。
最近のアプローチには、自己監視型予測符号化および対応オートエンコーダ(CAE)モデルが含まれる。
コントラスト予測符号化(CPC)、オートレグレッシブ予測符号化、CAEなどのフレームレベルの特徴を従来のMFCCと比較します。
論文 参考訳(メタデータ) (2020-12-14T10:17:25Z) - Unsupervised Cross-lingual Representation Learning for Speech
Recognition [63.85924123692923]
XLSRは、複数の言語における音声の生波形から1つのモデルを事前学習することで、言語間音声表現を学習する。
我々は、マスク付き潜在音声表現よりも対照的なタスクを解くことで訓練されたwav2vec 2.0を構築した。
実験により、言語間事前学習はモノリンガル事前訓練よりも著しく優れていることが示された。
論文 参考訳(メタデータ) (2020-06-24T18:25:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。