論文の概要: Multi-view Subspace Clustering via An Adaptive Consensus Graph Filter
- arxiv url: http://arxiv.org/abs/2403.08787v1
- Date: Tue, 30 Jan 2024 02:03:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-25 08:16:13.562138
- Title: Multi-view Subspace Clustering via An Adaptive Consensus Graph Filter
- Title(参考訳): Adaptive Consensus Graph Filterによるマルチビューサブスペースクラスタリング
- Authors: Lai Wei, Shanshan Song,
- Abstract要約: 近年,マルチビューサブスペースクラスタリング (MVSC) が注目されている。
本稿では、コンセンサス再構成係数行列の存在を仮定し、コンセンサスグラフフィルタを構築する。
各ビューでは、データをスムーズ化し、再構成係数行列の正規化器を設計する。
- 参考スコア(独自算出の注目度): 4.3507834596906125
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multiview subspace clustering (MVSC) has attracted an increasing amount of attention in recent years. Most existing MVSC methods first collect complementary information from different views and consequently derive a consensus reconstruction coefficient matrix to indicate the subspace structure of a multi-view data set. In this paper, we initially assume the existence of a consensus reconstruction coefficient matrix and then use it to build a consensus graph filter. In each view, the filter is employed for smoothing the data and designing a regularizer for the reconstruction coefficient matrix. Finally, the obtained reconstruction coefficient matrices from different views are used to create constraints for the consensus reconstruction coefficient matrix. Therefore, in the proposed method, the consensus reconstruction coefficient matrix, the consensus graph filter, and the reconstruction coefficient matrices from different views are interdependent. We provide an optimization algorithm to obtain their optimal values. Extensive experiments on diverse multi-view data sets demonstrate that our approach outperforms some state-of-the-art methods.
- Abstract(参考訳): 近年,マルチビューサブスペースクラスタリング (MVSC) が注目されている。
既存のMVSC手法の多くは、まず異なるビューから補完情報を収集し、その結果、マルチビューデータセットのサブスペース構造を示すためにコンセンサス再構成係数行列を導出する。
本稿ではまず,まずコンセンサス再構成係数行列の存在を仮定し,それを用いてコンセンサスグラフフィルタを構築する。
各ビューでは、データをスムーズ化し、再構成係数行列の正規化器を設計する。
最後に、異なる視点から得られた再構成係数行列を用いて、コンセンサス再構成係数行列の制約を作成する。
そこで,提案手法では,異なる視点からのコンセンサス再構成係数行列,コンセンサスグラフフィルタ,および再構成係数行列が相互依存する。
最適な値を得るための最適化アルゴリズムを提供する。
多様なマルチビューデータセットに対する大規模な実験により、我々の手法は最先端の手法よりも優れていることが示された。
関連論文リスト
- Enhanced Latent Multi-view Subspace Clustering [25.343388834470247]
潜在空間表現を復元するための拡張潜在多視点サブスペースクラスタリング(ELMSC)手法を提案する。
提案するELMSCは,最先端のマルチビュークラスタリング手法よりも高いクラスタリング性能を実現することができる。
論文 参考訳(メタデータ) (2023-12-22T15:28:55Z) - Adaptive Graph Convolutional Subspace Clustering [10.766537212211217]
スペクトル型サブスペースクラスタリングアルゴリズムは多くのサブスペースクラスタリングアプリケーションにおいて優れた性能を示している。
本稿では,グラフ畳み込みネットワークにヒントを得たグラフ畳み込み手法を用いて特徴抽出法と係数行列制約を同時に開発する。
AGCSCを用いることで、元のデータサンプルの集合的特徴表現がサブスペースクラスタリングに適していると主張する。
論文 参考訳(メタデータ) (2023-05-05T10:27:23Z) - Late Fusion Multi-view Clustering via Global and Local Alignment
Maximization [61.89218392703043]
マルチビュークラスタリング(MVC)は、異なるビューからの補完情報を最適に統合し、クラスタリング性能を改善する。
既存のアプローチの多くは、クラスタリングに最適な類似性行列を学ぶために、複数の事前定義された類似性を直接融合する。
これらの問題に対処するために、アライメントを通してレイトフュージョンMVCを提案する。
論文 参考訳(メタデータ) (2022-08-02T01:49:31Z) - Multi-view Clustering via Deep Matrix Factorization and Partition
Alignment [43.56334737599984]
本稿では,深層行列分解と分割アライメントによる新しいマルチビュークラスタリングアルゴリズムを提案する。
収束性が証明された最適化問題を解くために交互最適化アルゴリズムを開発した。
論文 参考訳(メタデータ) (2021-05-01T15:06:57Z) - Multi-view Clustering with Deep Matrix Factorization and Global Graph
Refinement [37.34296330445708]
マルチビュークラスタリングは、機械学習とデータマイニングにおいて重要かつ困難なタスクです。
本稿では,ディープセミnmfとグローバルグラフリファインメント(mvc-dmf-ggr)を用いたマルチビュークラスタリング手法を提案する。
論文 参考訳(メタデータ) (2021-05-01T13:40:20Z) - Discriminatively Constrained Semi-supervised Multi-view Nonnegative
Matrix Factorization with Graph Regularization [10.978930376656423]
差別的制約付きセミスーパービジョン・マルチビュー非負行列因子化(DCS2MVNMF)を提案する。
具体的には、各ビューの補助マトリックスに対して差別的重み付け行列を導入し、クラス間の区別を高める。
さらに,複数のビューを整列し,対応する反復最適化スキームを完成させるために,新しい機能スケール正規化戦略を設計する。
論文 参考訳(メタデータ) (2020-10-26T02:58:11Z) - Multi-View Spectral Clustering with High-Order Optimal Neighborhood
Laplacian Matrix [57.11971786407279]
マルチビュースペクトルクラスタリングは、データ間の固有のクラスタ構造を効果的に明らかにすることができる。
本稿では,高次最適近傍ラプラシア行列を学習するマルチビュースペクトルクラスタリングアルゴリズムを提案する。
提案アルゴリズムは, 1次ベースと高次ベースの両方の線形結合の近傍を探索し, 最適ラプラシア行列を生成する。
論文 参考訳(メタデータ) (2020-08-31T12:28:40Z) - Unsupervised Multi-view Clustering by Squeezing Hybrid Knowledge from
Cross View and Each View [68.88732535086338]
本稿では,適応グラフ正規化に基づくマルチビュークラスタリング手法を提案する。
5つの多視点ベンチマークの実験結果から,提案手法が他の最先端手法をクリアマージンで上回ることを示す。
論文 参考訳(メタデータ) (2020-08-23T08:25:06Z) - Augmentation of the Reconstruction Performance of Fuzzy C-Means with an
Optimized Fuzzification Factor Vector [99.19847674810079]
Fuzzy C-Means (FCM) は情報グラニュラーを構成する最も頻繁に使用される手法の1つである。
本稿では, ファジィ化因子のベクトルを導入することにより, FCMに基づく脱顆粒機構を増強する。
合成データセットと公開データセットの両方で実験が完了し、提案手法が汎用データ再構成手法より優れていることが示された。
論文 参考訳(メタデータ) (2020-04-13T04:17:30Z) - Federated Multi-view Matrix Factorization for Personalized
Recommendations [53.74747022749739]
本稿では,フェデレートされた学習フレームワークを,複数のデータソースを用いた行列分解に拡張する,フェデレートされたマルチビュー行列分解手法を提案する。
本手法では,ユーザの個人情報を中央サーバに転送することなく,マルチビューモデルを学習することができる。
論文 参考訳(メタデータ) (2020-04-08T21:07:50Z) - Kullback-Leibler Divergence-Based Fuzzy $C$-Means Clustering
Incorporating Morphological Reconstruction and Wavelet Frames for Image
Segmentation [152.609322951917]
そこで我々は,厳密なウェーブレットフレーム変換と形態的再構成操作を組み込むことで,Kulback-Leibler (KL) 発散に基づくFuzzy C-Means (FCM) アルゴリズムを考案した。
提案アルゴリズムはよく機能し、他の比較アルゴリズムよりもセグメンテーション性能が優れている。
論文 参考訳(メタデータ) (2020-02-21T05:19:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。