論文の概要: Late Fusion Multi-view Clustering via Global and Local Alignment
Maximization
- arxiv url: http://arxiv.org/abs/2208.01198v1
- Date: Tue, 2 Aug 2022 01:49:31 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-03 13:26:16.742216
- Title: Late Fusion Multi-view Clustering via Global and Local Alignment
Maximization
- Title(参考訳): グローバルおよびローカルアライメント最大化による後期核融合多視点クラスタリング
- Authors: Siwei Wang, Xinwang Liu, En Zhu
- Abstract要約: マルチビュークラスタリング(MVC)は、異なるビューからの補完情報を最適に統合し、クラスタリング性能を改善する。
既存のアプローチの多くは、クラスタリングに最適な類似性行列を学ぶために、複数の事前定義された類似性を直接融合する。
これらの問題に対処するために、アライメントを通してレイトフュージョンMVCを提案する。
- 参考スコア(独自算出の注目度): 61.89218392703043
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi-view clustering (MVC) optimally integrates complementary information
from different views to improve clustering performance. Although demonstrating
promising performance in various applications, most of existing approaches
directly fuse multiple pre-specified similarities to learn an optimal
similarity matrix for clustering, which could cause over-complicated
optimization and intensive computational cost. In this paper, we propose late
fusion MVC via alignment maximization to address these issues. To do so, we
first reveal the theoretical connection of existing k-means clustering and the
alignment between base partitions and the consensus one. Based on this
observation, we propose a simple but effective multi-view algorithm termed
LF-MVC-GAM. It optimally fuses multiple source information in partition level
from each individual view, and maximally aligns the consensus partition with
these weighted base ones. Such an alignment is beneficial to integrate
partition level information and significantly reduce the computational
complexity by sufficiently simplifying the optimization procedure. We then
design another variant, LF-MVC-LAM to further improve the clustering
performance by preserving the local intrinsic structure among multiple
partition spaces. After that, we develop two three-step iterative algorithms to
solve the resultant optimization problems with theoretically guaranteed
convergence. Further, we provide the generalization error bound analysis of the
proposed algorithms. Extensive experiments on eighteen multi-view benchmark
datasets demonstrate the effectiveness and efficiency of the proposed
LF-MVC-GAM and LF-MVC-LAM, ranging from small to large-scale data items. The
codes of the proposed algorithms are publicly available at
https://github.com/wangsiwei2010/latefusionalignment.
- Abstract(参考訳): マルチビュークラスタリング(MVC)は、異なるビューからの補完情報を最適に統合し、クラスタリング性能を改善する。
様々なアプリケーションで有望な性能を示すが、既存のアプローチの多くは、複数の事前定義された類似性を直接融合してクラスタリングに最適な類似性行列を学習する。
本稿では,これらの問題に対処するため,アライメントの最大化によるレイトフュージョンMVCを提案する。
そこで我々はまず,既存のk-meansクラスタリングとベースパーティションとコンセンサスクラスタのアライメントの理論的関係を明らかにする。
そこで本研究では,LF-MVC-GAMと呼ばれる簡易かつ効果的なマルチビューアルゴリズムを提案する。
個々のビューから複数のソース情報をパーティションレベルで最適に融合し、コンセンサスパーティションをこれらの重み付けベースと最大に整合させる。
このようなアライメントは分割レベルの情報を統合し、最適化手順を十分に単純化することで計算の複雑さを大幅に削減するのに有用である。
次に,複数の分割空間間の局所固有構造を保存することにより,クラスタリング性能をさらに向上するために,別の変種LF-MVC-LAMを設計する。
その後, 2つの3段階反復アルゴリズムを開発し, 理論的に保証された収束による最適化問題を解く。
さらに,提案アルゴリズムの一般化誤差境界解析について述べる。
18のマルチビューベンチマークデータセットに関する広範な実験は、小規模から大規模データ項目まで、提案されたlf-mvc-gamとlf-mvc-lamの有効性と効率を示している。
提案されたアルゴリズムのコードはhttps://github.com/wangsiwei2010/latefusionalignmentで公開されている。
関連論文リスト
- Fast and Scalable Semi-Supervised Learning for Multi-View Subspace Clustering [13.638434337947302]
FSSMSCは、既存のアプローチで一般的に見られる高い計算複雑性に対する新しいソリューションである。
この手法は、各データポイントを選択されたランドマークの疎線型結合として表現し、すべてのビューにまたがるコンセンサスアンカーグラフを生成する。
FSSMSCの有効性と効率は、様々なスケールの複数のベンチマークデータセットに対する広範な実験を通して検証される。
論文 参考訳(メタデータ) (2024-08-11T06:54:00Z) - One-Step Late Fusion Multi-view Clustering with Compressed Subspace [29.02032034647922]
圧縮部分空間を用いたワンステップレイトフュージョンマルチビュークラスタリング(OS-LFMVC-CS)という統合フレームワークを提案する。
コンセンサス部分空間を用いて分割行列を整列し、分割融合を最適化し、融合分割行列を用いて離散ラベルの学習を指導する。
論文 参考訳(メタデータ) (2024-01-03T06:18:30Z) - One-step Multi-view Clustering with Diverse Representation [47.41455937479201]
本稿では,多視点学習と$k$-meansを統合フレームワークに組み込んだ一段階のマルチビュークラスタリングを提案する。
そこで本研究では,効率の良い最適化アルゴリズムを開発し,その解法について述べる。
論文 参考訳(メタデータ) (2023-06-08T02:52:24Z) - Multi-View Clustering via Semi-non-negative Tensor Factorization [120.87318230985653]
半負のテンソル因子分解(Semi-NTF)に基づく新しいマルチビュークラスタリングを開発する。
本モデルは、ビュー間の関係を直接考慮し、ビュー間の補完情報を利用する。
さらに,提案手法の最適化アルゴリズムを提案し,そのアルゴリズムが常に定常KKT点に収束することを数学的に証明する。
論文 参考訳(メタデータ) (2023-03-29T14:54:19Z) - Adaptively-weighted Integral Space for Fast Multiview Clustering [54.177846260063966]
線形複雑度に近い高速マルチビュークラスタリングのための適応重み付き積分空間(AIMC)を提案する。
特に、ビュー生成モデルは、潜在積分空間からのビュー観測を再構成するために設計されている。
いくつかの実世界のデータセットで実施された実験は、提案したAIMC法の優位性を確認した。
論文 参考訳(メタデータ) (2022-08-25T05:47:39Z) - Multi-view Clustering via Deep Matrix Factorization and Partition
Alignment [43.56334737599984]
本稿では,深層行列分解と分割アライメントによる新しいマルチビュークラスタリングアルゴリズムを提案する。
収束性が証明された最適化問題を解くために交互最適化アルゴリズムを開発した。
論文 参考訳(メタデータ) (2021-05-01T15:06:57Z) - Multi-View Spectral Clustering with High-Order Optimal Neighborhood
Laplacian Matrix [57.11971786407279]
マルチビュースペクトルクラスタリングは、データ間の固有のクラスタ構造を効果的に明らかにすることができる。
本稿では,高次最適近傍ラプラシア行列を学習するマルチビュースペクトルクラスタリングアルゴリズムを提案する。
提案アルゴリズムは, 1次ベースと高次ベースの両方の線形結合の近傍を探索し, 最適ラプラシア行列を生成する。
論文 参考訳(メタデータ) (2020-08-31T12:28:40Z) - Unsupervised Multi-view Clustering by Squeezing Hybrid Knowledge from
Cross View and Each View [68.88732535086338]
本稿では,適応グラフ正規化に基づくマルチビュークラスタリング手法を提案する。
5つの多視点ベンチマークの実験結果から,提案手法が他の最先端手法をクリアマージンで上回ることを示す。
論文 参考訳(メタデータ) (2020-08-23T08:25:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。