Efficient Source-Free Time-Series Adaptation via Parameter Subspace Disentanglement
- URL: http://arxiv.org/abs/2410.02147v1
- Date: Thu, 3 Oct 2024 02:12:03 GMT
- Title: Efficient Source-Free Time-Series Adaptation via Parameter Subspace Disentanglement
- Authors: Gaurav Patel, Christopher Sandino, Behrooz Mahasseni, Ellen L Zippi, Erdrin Azemi, Ali Moin, Juri Minxha,
- Abstract summary: We propose a framework for efficient Source-Free Domain Adaptation (SFDA)
Our approach introduces an improved paradigm for source-model preparation and target-side adaptation.
We demonstrate that our framework is compatible with various SFDA methods and achieves significant computational efficiency.
- Score: 0.7558576228782637
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose a framework for efficient Source-Free Domain Adaptation (SFDA) in the context of time-series, focusing on enhancing both parameter efficiency and data-sample utilization. Our approach introduces an improved paradigm for source-model preparation and target-side adaptation, aiming to enhance training efficiency during target adaptation. Specifically, we reparameterize the source model's weights in a Tucker-style decomposed manner, factorizing the model into a compact form during the source model preparation phase. During target-side adaptation, only a subset of these decomposed factors is fine-tuned, leading to significant improvements in training efficiency. We demonstrate using PAC Bayesian analysis that this selective fine-tuning strategy implicitly regularizes the adaptation process by constraining the model's learning capacity. Furthermore, this re-parameterization reduces the overall model size and enhances inference efficiency, making the approach particularly well suited for resource-constrained devices. Additionally, we demonstrate that our framework is compatible with various SFDA methods and achieves significant computational efficiency, reducing the number of fine-tuned parameters and inference overhead in terms of MACs by over 90% while maintaining model performance.
Related papers
- SaRA: High-Efficient Diffusion Model Fine-tuning with Progressive Sparse Low-Rank Adaptation [52.6922833948127]
In this work, we investigate the importance of parameters in pre-trained diffusion models.
We propose a novel model fine-tuning method to make full use of these ineffective parameters.
Our method enhances the generative capabilities of pre-trained models in downstream applications.
arXiv Detail & Related papers (2024-09-10T16:44:47Z) - Forecast-PEFT: Parameter-Efficient Fine-Tuning for Pre-trained Motion Forecasting Models [68.23649978697027]
Forecast-PEFT is a fine-tuning strategy that freezes the majority of the model's parameters, focusing adjustments on newly introduced prompts and adapters.
Our experiments show that Forecast-PEFT outperforms traditional full fine-tuning methods in motion prediction tasks.
Forecast-FT further improves prediction performance, evidencing up to a 9.6% enhancement over conventional baseline methods.
arXiv Detail & Related papers (2024-07-28T19:18:59Z) - Spectrum-Aware Parameter Efficient Fine-Tuning for Diffusion Models [73.88009808326387]
We propose a novel spectrum-aware adaptation framework for generative models.
Our method adjusts both singular values and their basis vectors of pretrained weights.
We introduce Spectral Ortho Decomposition Adaptation (SODA), which balances computational efficiency and representation capacity.
arXiv Detail & Related papers (2024-05-31T17:43:35Z) - Parameter-Efficient Fine-Tuning With Adapters [5.948206235442328]
This research introduces a novel adaptation method utilizing the UniPELT framework as a base.
Our method employs adapters, which enable efficient transfer of pretrained models to new tasks with minimal retraining of the base model parameters.
arXiv Detail & Related papers (2024-05-09T01:40:38Z) - LoRA-SP: Streamlined Partial Parameter Adaptation for Resource-Efficient Fine-Tuning of Large Language Models [7.926974917872204]
LoRA-SP is a novel approach utilizing randomized half-selective parameter freezing.
LoRA-SP significantly reduces computational and memory requirements without compromising model performance.
arXiv Detail & Related papers (2024-02-28T06:50:10Z) - Boosting Inference Efficiency: Unleashing the Power of Parameter-Shared
Pre-trained Language Models [109.06052781040916]
We introduce a technique to enhance the inference efficiency of parameter-shared language models.
We also propose a simple pre-training technique that leads to fully or partially shared models.
Results demonstrate the effectiveness of our methods on both autoregressive and autoencoding PLMs.
arXiv Detail & Related papers (2023-10-19T15:13:58Z) - Scaling Pre-trained Language Models to Deeper via Parameter-efficient
Architecture [68.13678918660872]
We design a more capable parameter-sharing architecture based on matrix product operator (MPO)
MPO decomposition can reorganize and factorize the information of a parameter matrix into two parts.
Our architecture shares the central tensor across all layers for reducing the model size.
arXiv Detail & Related papers (2023-03-27T02:34:09Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
We show that a host of variations can be covered in a unified framework that we propose.
We prove the convergence of this novel scheme and rigorously evaluate its empirical performance on ResNet, LSTM, and Transformer.
arXiv Detail & Related papers (2020-06-10T08:22:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.