論文の概要: Structural Positional Encoding for knowledge integration in transformer-based medical process monitoring
- arxiv url: http://arxiv.org/abs/2403.08836v1
- Date: Wed, 13 Mar 2024 08:15:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-16 00:41:28.809479
- Title: Structural Positional Encoding for knowledge integration in transformer-based medical process monitoring
- Title(参考訳): 変圧器を用いた医療プロセスモニタリングにおける知識統合のための構造的位置エンコーディング
- Authors: Christopher Irwin, Marco Dossena, Giorgio Leonardi, Stefania Montani,
- Abstract要約: 本研究では,注意機構に基づくディープラーニングアーキテクチャであるエムトランスを用いた予測プロセスモニタリング手法を提案する。
我々の研究の大きな貢献は、グラフ位置符号化技術を通じて行われる存在論的ドメイン固有の知識の取り込みにある。
- 参考スコア(独自算出の注目度): 0.26999000177990923
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Predictive process monitoring is a process mining task aimed at forecasting information about a running process trace, such as the most correct next activity to be executed. In medical domains, predictive process monitoring can provide valuable decision support in atypical and nontrivial situations. Decision support and quality assessment in medicine cannot ignore domain knowledge, in order to be grounded on all the available information (which is not limited to data) and to be really acceptable by end users. In this paper, we propose a predictive process monitoring approach relying on the use of a {\em transformer}, a deep learning architecture based on the attention mechanism. A major contribution of our work lies in the incorporation of ontological domain-specific knowledge, carried out through a graph positional encoding technique. The paper presents and discusses the encouraging experimental result we are collecting in the domain of stroke management.
- Abstract(参考訳): 予測プロセスモニタリングは、実行すべき最も正しい次のアクティビティなど、実行中のプロセストレースに関する情報を予測するためのプロセスマイニングタスクである。
医学領域では、予測プロセスモニタリングは非典型的かつ非自明な状況において貴重な意思決定支援を提供することができる。
医療における意思決定支援と品質評価は、すべての利用可能な情報(データに限らず)に基づいて、ドメイン知識を無視することができず、エンドユーザーが本当に受け入れることができる。
本稿では,注意機構に基づくディープラーニングアーキテクチャである {\em transformer} を利用した予測プロセスモニタリング手法を提案する。
我々の研究の大きな貢献は、グラフ位置符号化技術を通じて行われる存在論的ドメイン固有の知識の取り込みにある。
本稿では,脳卒中管理の領域において収集した実験結果を提示し,考察する。
関連論文リスト
- WISE: Unraveling Business Process Metrics with Domain Knowledge [0.0]
複雑な産業プロセスの異常は、しばしばイベントデータの高変動性と複雑さによって隠蔽される。
本稿では、ドメイン知識、プロセスマイニング、機械学習の統合により、ビジネスプロセスメトリクスを分析する新しい手法WISEを紹介する。
WISEはビジネスプロセス分析における自動化を強化し、望ましいプロセスフローからの逸脱を効果的に検出する。
論文 参考訳(メタデータ) (2024-10-06T07:57:08Z) - Attention Please: What Transformer Models Really Learn for Process Prediction [0.0]
本稿では, 変圧器をベースとした次活動予測モデルの注意点が, 意思決定の根拠となるかどうかを考察する。
我々は,次の活動予測モデルにおける注意点が説明役として機能し,この事実を2つのグラフに基づく説明手法で活用できることを見出した。
論文 参考訳(メタデータ) (2024-08-12T08:20:38Z) - Process Variant Analysis Across Continuous Features: A Novel Framework [0.0]
本研究は, 業務プロセスにおけるケースの効果的セグメンテーションの課題に対処する。
本研究では,スライディングウインドウ手法と地球移動器の距離を併用して制御流の挙動変化を検出する手法を提案する。
オランダの保険会社UWVと共同で実生活事例研究を行い,その方法論を検証した。
論文 参考訳(メタデータ) (2024-05-06T16:10:13Z) - DARE: Towards Robust Text Explanations in Biomedical and Healthcare
Applications [54.93807822347193]
帰属ロバスト性評価手法を与えられたドメインに適応させ、ドメイン固有の妥当性を考慮する方法を示す。
次に,DAREが特徴とする脆さを軽減するために,対人訓練とFAR訓練の2つの方法を提案する。
最後に,確立した3つのバイオメディカル・ベンチマークを用いて実験を行い,本手法を実証的に検証した。
論文 参考訳(メタデータ) (2023-07-05T08:11:40Z) - Trace Encoding in Process Mining: a survey and benchmarking [0.34410212782758054]
メソッドは、予測プロセス監視、異常なケース検出、クラスタリングトレースなど、いくつかのプロセスマイニングタスクで使用される。
ほとんどの論文では、既存の符号化手法を任意に選択するか、特定の専門家知識ドメインに基づいた戦略を採用する。
この研究は、27のメソッドを比較することで、イベントログエンコーディングに関する包括的な調査を提供することを目的としている。
論文 参考訳(メタデータ) (2023-01-05T17:25:30Z) - Machine learning in bioprocess development: From promise to practice [58.720142291102135]
機械学習(ML)アプローチのようなデータ駆動の手法は、大きな設計空間を合理的に探索する可能性が高い。
本研究の目的は,これまでのバイオプロセス開発におけるML手法の適用例を示すことである。
論文 参考訳(メタデータ) (2022-10-04T13:48:59Z) - Metrics reloaded: Recommendations for image analysis validation [59.60445111432934]
メトリクスのリロード(Metrics Reloaded)は、メトリクスの問題を意識した選択において研究者を導く包括的なフレームワークである。
このフレームワークは多段階のDelphiプロセスで開発され、問題指紋という新しい概念に基づいている。
問題指紋に基づいて、ユーザは適切なバリデーションメトリクスを選択して適用するプロセスを通じてガイドされる。
論文 参考訳(メタデータ) (2022-06-03T15:56:51Z) - Unsupervised deep learning techniques for powdery mildew recognition
based on multispectral imaging [63.62764375279861]
本稿では,キュウリ葉の粉状ミドウを自動的に認識する深層学習手法を提案する。
マルチスペクトルイメージングデータに適用した教師なし深層学習技術に焦点をあてる。
本稿では, オートエンコーダアーキテクチャを用いて, 疾患検出のための2つの手法を提案する。
論文 参考訳(メタデータ) (2021-12-20T13:29:13Z) - A2Log: Attentive Augmented Log Anomaly Detection [53.06341151551106]
異常検出は、ITサービスの信頼性とサービス性にとってますます重要になる。
既存の教師なし手法は、適切な決定境界を得るために異常な例を必要とする。
我々は,異常判定と異常判定の2段階からなる教師なし異常検出手法であるA2Logを開発した。
論文 参考訳(メタデータ) (2021-09-20T13:40:21Z) - CoCoMoT: Conformance Checking of Multi-Perspective Processes via SMT
(Extended Version) [62.96267257163426]
我々はCoCoMoT(Computing Conformance Modulo Theories)フレームワークを紹介する。
まず、純粋な制御フロー設定で研究したSATベースのエンコーディングを、データ認識ケースに持ち上げる方法を示す。
次に,プロパティ保存型クラスタリングの概念に基づく新しい前処理手法を提案する。
論文 参考訳(メタデータ) (2021-03-18T20:22:50Z) - Explainable Artificial Intelligence for Process Mining: A General
Overview and Application of a Novel Local Explanation Approach for Predictive
Process Monitoring [0.0]
本研究では,意思決定環境の確立と理解促進を目的とした概念的枠組みを提案する。
本研究では、中間潜在空間表現を用いて、検証データセットから局所領域を定義する。
採用したディープラーニング分類器は、ROC曲線0.94のエリアで良好な性能を発揮する。
論文 参考訳(メタデータ) (2020-09-04T10:28:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。