Learning-Enhanced Neighborhood Selection for the Vehicle Routing Problem with Time Windows
- URL: http://arxiv.org/abs/2403.08839v1
- Date: Wed, 13 Mar 2024 12:08:27 GMT
- Title: Learning-Enhanced Neighborhood Selection for the Vehicle Routing Problem with Time Windows
- Authors: Willem Feijen, Guido Schäfer, Koen Dekker, Seppo Pieterse,
- Abstract summary: We propose to integrate machine learning (ML) into Large Neighborhood Search (LNS) to decide which parts of the solution should be destroyed and repaired in each iteration of LNS.
Our approach is universally applicable, i.e., it can be applied to any LNS algorithm to amplify the workings of the destroy algorithm.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Neighborhood Search (LNS) is a universal approach that is broadly applicable and has proven to be highly efficient in practice for solving optimization problems. We propose to integrate machine learning (ML) into LNS to assist in deciding which parts of the solution should be destroyed and repaired in each iteration of LNS. We refer to our new approach as Learning-Enhanced Neighborhood Selection (LENS for short). Our approach is universally applicable, i.e., it can be applied to any LNS algorithm to amplify the workings of the destroy algorithm. In this paper, we demonstrate the potential of LENS on the fundamental Vehicle Routing Problem with Time Windows (VRPTW). We implemented an LNS algorithm for VRPTW and collected data on generated novel training instances derived from well-known, extensively utilized benchmark datasets. We trained our LENS approach with this data and compared the experimental results of our approach with two benchmark algorithms: a random neighborhood selection method to show that LENS learns to make informed choices and an oracle neighborhood selection method to demonstrate the potential of our LENS approach. With LENS, we obtain results that significantly improve the quality of the solutions.
Related papers
- EVOLvE: Evaluating and Optimizing LLMs For Exploration [76.66831821738927]
Large language models (LLMs) remain under-studied in scenarios requiring optimal decision-making under uncertainty.
We measure LLMs' (in)ability to make optimal decisions in bandits, a state-less reinforcement learning setting relevant to many applications.
Motivated by the existence of optimal exploration algorithms, we propose efficient ways to integrate this algorithmic knowledge into LLMs.
arXiv Detail & Related papers (2024-10-08T17:54:03Z) - DNN Partitioning, Task Offloading, and Resource Allocation in Dynamic Vehicular Networks: A Lyapunov-Guided Diffusion-Based Reinforcement Learning Approach [49.56404236394601]
We formulate the problem of joint DNN partitioning, task offloading, and resource allocation in Vehicular Edge Computing.
Our objective is to minimize the DNN-based task completion time while guaranteeing the system stability over time.
We propose a Multi-Agent Diffusion-based Deep Reinforcement Learning (MAD2RL) algorithm, incorporating the innovative use of diffusion models.
arXiv Detail & Related papers (2024-06-11T06:31:03Z) - Searching Large Neighborhoods for Integer Linear Programs with
Contrastive Learning [39.40838358438744]
Linear Programs (ILPs) are powerful tools for modeling and solving a large number of optimization problems.
Large Neighborhood Search (LNS), as a algorithm, can find high quality solutions to ILPs faster than Branch and Bound.
We propose a novel approach, CL-LNS, that delivers state-of-the-art anytime performance on several ILP benchmarks measured by metrics.
arXiv Detail & Related papers (2023-02-03T07:15:37Z) - Online Control of Adaptive Large Neighborhood Search using Deep Reinforcement Learning [4.374837991804085]
We introduce a Deep Reinforcement Learning based approach called DR-ALNS that selects operators, adjusts parameters, and controls the acceptance criterion throughout the search.
We evaluate the proposed method on a problem with orienteering weights and time windows, as presented in an IJCAI competition.
The results show that our approach outperforms vanilla ALNS, ALNS tuned with Bayesian optimization, and two state-of-the-art DRL approaches.
arXiv Detail & Related papers (2022-11-01T21:33:46Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
We improve the theoretical and empirical performance of neural-network(NN)-based active learning algorithms for the non-parametric streaming setting.
We introduce two regret metrics by minimizing the population loss that are more suitable in active learning than the one used in state-of-the-art (SOTA) related work.
arXiv Detail & Related papers (2022-10-02T05:03:38Z) - Training Neural Networks using SAT solvers [1.0152838128195465]
We propose an algorithm to explore the global optimisation method, using SAT solvers, for training a neural net.
In the experiments, we demonstrate the effectiveness of our algorithm against the ADAM optimiser in certain tasks like parity learning.
arXiv Detail & Related papers (2022-06-10T01:31:12Z) - Learning Sampling Policy for Faster Derivative Free Optimization [100.27518340593284]
We propose a new reinforcement learning based ZO algorithm (ZO-RL) with learning the sampling policy for generating the perturbations in ZO optimization instead of using random sampling.
Our results show that our ZO-RL algorithm can effectively reduce the variances of ZO gradient by learning a sampling policy, and converge faster than existing ZO algorithms in different scenarios.
arXiv Detail & Related papers (2021-04-09T14:50:59Z) - Reinforcement Learning for Variable Selection in a Branch and Bound
Algorithm [0.10499611180329801]
We leverage patterns in real-world instances to learn from scratch a new branching strategy optimised for a given problem.
We propose FMSTS, a novel Reinforcement Learning approach specifically designed for this task.
arXiv Detail & Related papers (2020-05-20T13:15:48Z) - A General Large Neighborhood Search Framework for Solving Integer Linear
Programs [46.62993477453986]
We focus on solving integer programs, and ground our approach in the large neighborhood search (SLN) paradigm.
We show that our LNS framework can significantly outperform compared to state-of-the-art commercial solvers such as Gurobi.
arXiv Detail & Related papers (2020-03-29T23:08:14Z) - Reinforcement Learning Based Vehicle-cell Association Algorithm for
Highly Mobile Millimeter Wave Communication [53.47785498477648]
This paper investigates the problem of vehicle-cell association in millimeter wave (mmWave) communication networks.
We first formulate the user state (VU) problem as a discrete non-vehicle association optimization problem.
The proposed solution achieves up to 15% gains in terms sum of user complexity and 20% reduction in VUE compared to several baseline designs.
arXiv Detail & Related papers (2020-01-22T08:51:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.