Federated Data Model
- URL: http://arxiv.org/abs/2403.08887v1
- Date: Wed, 13 Mar 2024 18:16:54 GMT
- Title: Federated Data Model
- Authors: Xiao Chen, Shunan Zhang, Eric Z. Chen, Yikang Liu, Lin Zhao, Terrence Chen, Shanhui Sun,
- Abstract summary: In artificial intelligence (AI), especially deep learning, data diversity and volume play a pivotal role in model development.
We developed a method called the Federated Data Model (FDM) to train robust deep learning models across different locations.
Our results show that models trained with this method perform well both on the data they were originally trained on and on data from other sites.
- Score: 16.62770246342126
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In artificial intelligence (AI), especially deep learning, data diversity and volume play a pivotal role in model development. However, training a robust deep learning model often faces challenges due to data privacy, regulations, and the difficulty of sharing data between different locations, especially for medical applications. To address this, we developed a method called the Federated Data Model (FDM). This method uses diffusion models to learn the characteristics of data at one site and then creates synthetic data that can be used at another site without sharing the actual data. We tested this approach with a medical image segmentation task, focusing on cardiac magnetic resonance images from different hospitals. Our results show that models trained with this method perform well both on the data they were originally trained on and on data from other sites. This approach offers a promising way to train accurate and privacy-respecting AI models across different locations.
Related papers
- Universal Medical Imaging Model for Domain Generalization with Data Privacy [2.8727695958743364]
We propose a federated learning approach to transfer knowledge from multiple local models to a global model.
The primary objective is to train a global model capable of performing a wide variety of medical imaging tasks.
arXiv Detail & Related papers (2024-07-20T01:24:15Z) - The Journey, Not the Destination: How Data Guides Diffusion Models [75.19694584942623]
Diffusion models trained on large datasets can synthesize photo-realistic images of remarkable quality and diversity.
We propose a framework that: (i) provides a formal notion of data attribution in the context of diffusion models, and (ii) allows us to counterfactually validate such attributions.
arXiv Detail & Related papers (2023-12-11T08:39:43Z) - How Good Are Synthetic Medical Images? An Empirical Study with Lung
Ultrasound [0.3312417881789094]
Adding synthetic training data using generative models offers a low-cost method to deal with the data scarcity challenge.
We show that training with both synthetic and real data outperforms training with real data alone.
arXiv Detail & Related papers (2023-10-05T15:42:53Z) - Dataless Knowledge Fusion by Merging Weights of Language Models [51.8162883997512]
Fine-tuning pre-trained language models has become the prevalent paradigm for building downstream NLP models.
This creates a barrier to fusing knowledge across individual models to yield a better single model.
We propose a dataless knowledge fusion method that merges models in their parameter space.
arXiv Detail & Related papers (2022-12-19T20:46:43Z) - Synthetic Model Combination: An Instance-wise Approach to Unsupervised
Ensemble Learning [92.89846887298852]
Consider making a prediction over new test data without any opportunity to learn from a training set of labelled data.
Give access to a set of expert models and their predictions alongside some limited information about the dataset used to train them.
arXiv Detail & Related papers (2022-10-11T10:20:31Z) - Application of Federated Learning in Building a Robust COVID-19 Chest
X-ray Classification Model [0.0]
Federated Learning (FL) helps AI models to generalize better without moving all the data to a central server.
We trained a deep learning model to solve a binary classification problem of predicting the presence or absence of COVID-19.
arXiv Detail & Related papers (2022-04-22T05:21:50Z) - Practical Challenges in Differentially-Private Federated Survival
Analysis of Medical Data [57.19441629270029]
In this paper, we take advantage of the inherent properties of neural networks to federate the process of training of survival analysis models.
In the realistic setting of small medical datasets and only a few data centers, this noise makes it harder for the models to converge.
We propose DPFed-post which adds a post-processing stage to the private federated learning scheme.
arXiv Detail & Related papers (2022-02-08T10:03:24Z) - Data from Model: Extracting Data from Non-robust and Robust Models [83.60161052867534]
This work explores the reverse process of generating data from a model, attempting to reveal the relationship between the data and the model.
We repeat the process of Data to Model (DtM) and Data from Model (DfM) in sequence and explore the loss of feature mapping information.
Our results show that the accuracy drop is limited even after multiple sequences of DtM and DfM, especially for robust models.
arXiv Detail & Related papers (2020-07-13T05:27:48Z) - Modeling Shared Responses in Neuroimaging Studies through MultiView ICA [94.31804763196116]
Group studies involving large cohorts of subjects are important to draw general conclusions about brain functional organization.
We propose a novel MultiView Independent Component Analysis model for group studies, where data from each subject are modeled as a linear combination of shared independent sources plus noise.
We demonstrate the usefulness of our approach first on fMRI data, where our model demonstrates improved sensitivity in identifying common sources among subjects.
arXiv Detail & Related papers (2020-06-11T17:29:53Z) - Have you forgotten? A method to assess if machine learning models have
forgotten data [20.9131206112401]
In the era of deep learning, aggregation of data from several sources is a common approach to ensuring data diversity.
In this paper, we want to address the challenging question of whether data have been forgotten by a model.
We establish statistical methods that compare the target's outputs with outputs of models trained with different datasets.
arXiv Detail & Related papers (2020-04-21T16:13:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.