論文の概要: Using Deep Learning for Morphological Classification in Pigs with a Focus on Sanitary Monitoring
- arxiv url: http://arxiv.org/abs/2403.08962v1
- Date: Wed, 13 Mar 2024 21:05:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-15 22:27:10.611010
- Title: Using Deep Learning for Morphological Classification in Pigs with a Focus on Sanitary Monitoring
- Title(参考訳): 深層学習を用いた豚の形態分類 : 衛生モニタリングを中心に
- Authors: Eduardo Bedin, Junior Silva Souza, Gabriel Toshio Hirokawa Higa, Alexandre Pereira, Charles Kiefer, Newton Loebens, Hemerson Pistori,
- Abstract要約: この研究は、これらのカドファジー、耳血腫、体のひっかき傷、赤み、天然汚れ(茶色または黒)の5つの豚の特徴に焦点を当てた。
以上の結果から,D-CNNは皮膚特性に関連するブタの身体形態の偏差の分類に有効であることが示唆された。
- 参考スコア(独自算出の注目度): 36.44117994399959
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The aim of this paper is to evaluate the use of D-CNN (Deep Convolutional Neural Networks) algorithms to classify pig body conditions in normal or not normal conditions, with a focus on characteristics that are observed in sanitary monitoring, and were used six different algorithms to do this task. The study focused on five pig characteristics, being these caudophagy, ear hematoma, scratches on the body, redness, and natural stains (brown or black). The results of the study showed that D-CNN was effective in classifying deviations in pig body morphologies related to skin characteristics. The evaluation was conducted by analyzing the performance metrics Precision, Recall, and F-score, as well as the statistical analyses ANOVA and the Scott-Knott test. The contribution of this article is characterized by the proposal of using D-CNN networks for morphological classification in pigs, with a focus on characteristics identified in sanitary monitoring. Among the best results, the average Precision metric of 80.6\% to classify caudophagy was achieved for the InceptionResNetV2 network, indicating the potential use of this technology for the proposed task. Additionally, a new image database was created, containing various pig's distinct body characteristics, which can serve as data for future research.
- Abstract(参考訳): 本研究の目的は,D-CNN(Deep Convolutional Neural Networks)アルゴリズムを用いて豚の体調を正常または正常でない状態に分類し,衛生モニタリングにおいて観察される特徴に着目し,6種類のアルゴリズムを用いて処理を行ったことである。
この研究は、これらのカドファジー、耳血腫、体のひっかき傷、赤み、天然の汚れ(茶色か黒)の5つの特徴に焦点を当てた。
以上の結果から,D-CNNは皮膚特性に関連するブタの身体形態の偏差の分類に有効であることが示唆された。
評価は,精度,リコール,Fスコア,統計解析のANOVAとスコットノット試験を用いて行った。
本論文の貢献は, 豚の形態分類におけるD-CNNネットワークの利用の提案と, 衛生モニタリングにおける特徴に着目したものである。
最良の結果の中で、インセプションResNetV2ネットワークにおいて、カドファジーを分類するための平均精度の80.6\%が達成された。
さらに、様々な豚の体の特徴を含む新しい画像データベースが作成され、将来の研究のためのデータとして機能する。
関連論文リスト
- Unveiling the Power of Sparse Neural Networks for Feature Selection [60.50319755984697]
スパースニューラルネットワーク(SNN)は、効率的な特徴選択のための強力なツールとして登場した。
動的スパーストレーニング(DST)アルゴリズムで訓練されたSNNは、平均して50%以上のメモリと55%以上のFLOPを削減できることを示す。
以上の結果から,DSTアルゴリズムで訓練したSNNによる特徴選択は,平均して50ドル以上のメモリと55%のFLOPを削減できることがわかった。
論文 参考訳(メタデータ) (2024-08-08T16:48:33Z) - An Improved CNN-based Neural Network Model for Fruit Sugar Level Detection [24.07349410158827]
我々は,果実の可視/近赤外(V/NIR)スペクトルに基づいて,ニューラルネットワーク(ANN)を用いた果実糖度推定のための回帰モデルを構築した。
果実糖濃度を検出対象として,Gan Nan Navel と Tian Shan Pear の2種類の果実データを収集し,その比較実験を行った。
論文 参考訳(メタデータ) (2023-11-18T17:07:25Z) - Bayesian Time-Series Classifier for Decoding Simple Visual Stimuli from
Intracranial Neural Activity [0.0]
本稿では,ハイレベルな解釈性を維持しつつ,課題に対処する簡易なベイズ時系列分類器(BTsC)モデルを提案する。
視覚的タスクにおける色をデコードするためにニューラルネットワークを利用することで、このアプローチの分類能力を実証する。
提案手法は,様々なタスクで記録されたニューラルデータに適用可能である。
論文 参考訳(メタデータ) (2023-07-28T17:04:06Z) - Mental arithmetic task classification with convolutional neural network
based on spectral-temporal features from EEG [0.47248250311484113]
ディープニューラルネットワーク(DNN)は、コンピュータビジョンアプリケーションにおいて大きな優位性を示している。
ここでは、主に2つの畳み込みニューラルネットワーク層を使用し、比較的少ないパラメータと高速で脳波からスペクトル時間的特徴を学習する浅層ニューラルネットワークを提案する。
実験の結果、浅いCNNモデルは他の全てのモデルより優れており、最高分類精度は90.68%に達した。
論文 参考訳(メタデータ) (2022-09-26T02:15:22Z) - White Matter Tracts are Point Clouds: Neuropsychological Score
Prediction and Critical Region Localization via Geometric Deep Learning [68.5548609642999]
ホワイトマタートラクトデータを用いた神経心理学的スコア予測のためのディープラーニングに基づくフレームワークを提案する。
各点の微細構造測定を行う点雲として, arcuate fasciculus (AF) を表現した。
Paired-Siamese Lossでは,連続した神経心理学的スコアの違いに関する情報を利用した予測性能を改善した。
論文 参考訳(メタデータ) (2022-07-06T02:03:28Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
本稿では,エンド・ツー・エンドのMB腫瘍分類を提案し,様々な入力サイズとネットワーク次元の一致した移動学習を提案する。
161ケースのデータセットを用いて、より大規模な入力解像度を持つ事前学習されたEfficientNetが、大幅な性能改善をもたらすことを実証した。
論文 参考訳(メタデータ) (2021-09-10T13:07:11Z) - Evaluation of Big Data based CNN Models in Classification of Skin
Lesions with Melanoma [7.919213739992465]
このアーキテクチャは、畳み込み型ニューラルネットワークに基づいており、新しいCNNモデルを用いて評価され、既存のCNNモデルの再訓練が行われた。
最高の性能は、修正版のResNet-50畳み込みニューラルネットワークを93.89%の精度で再訓練することで達成された。
論文 参考訳(メタデータ) (2020-07-10T15:39:32Z) - Automate Obstructive Sleep Apnea Diagnosis Using Convolutional Neural
Networks [4.882119124419393]
本稿では,1次元畳み込み層とFCN層を有するCNNアーキテクチャについて述べる。
提案した1次元CNNモデルはPSG信号を手動で前処理することなく優れた分類結果が得られる。
論文 参考訳(メタデータ) (2020-06-13T15:35:18Z) - Retinopathy of Prematurity Stage Diagnosis Using Object Segmentation and
Convolutional Neural Networks [68.96150598294072]
未熟児網膜症(英: Retinopathy of Prematurity、ROP)は、主に体重の低い未熟児に影響を及ぼす眼疾患である。
網膜の血管の増殖を招き、視力喪失を招き、最終的には網膜剥離を招き、失明を引き起こす。
近年,ディープラーニングを用いて診断を自動化する試みが盛んに行われている。
本稿では,従来のモデルの成功を基盤として,オブジェクトセグメンテーションと畳み込みニューラルネットワーク(CNN)を組み合わせた新しいアーキテクチャを開発する。
提案システムでは,まず対象分割モデルを訓練し,画素レベルでの区切り線を識別し,その結果のマスクを追加の"カラー"チャネルとして付加する。
論文 参考訳(メタデータ) (2020-04-03T14:07:41Z) - 1-D Convlutional Neural Networks for the Analysis of Pupil Size
Variations in Scotopic Conditions [79.71065005161566]
1次元畳み込みニューラルネットワークモデルは、短距離配列の分類のために訓練されている。
モデルは、ホールドアウトテストセット上で、高い平均精度で予測を提供する。
論文 参考訳(メタデータ) (2020-02-06T17:25:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。